体外测定模拟胃液和肠液中泮托拉唑钠及其降解产物的稳定性指示高效液相色谱法

IF 0.7 4区 医学 Q4 PHARMACOLOGY & PHARMACY Current Pharmaceutical Analysis Pub Date : 2023-12-15 DOI:10.2174/0115734129254806231127110951
Avani Gupta, Juber Akhtar, Kailash Chandra Rastogi, Badruddeen, Mohammad Irfan Khan, Mohammad Ahmad
{"title":"体外测定模拟胃液和肠液中泮托拉唑钠及其降解产物的稳定性指示高效液相色谱法","authors":"Avani Gupta, Juber Akhtar, Kailash Chandra Rastogi, Badruddeen, Mohammad Irfan Khan, Mohammad Ahmad","doi":"10.2174/0115734129254806231127110951","DOIUrl":null,"url":null,"abstract":"Background: A high-performance liquid chromatography (HPLC) method was developed for the determination of Pantoprazole Sodium (PPZ) in the presence of its degradation products. The degradation of PPZ was studied in simulated intestinal fluid (SIF) and simulated gastric fluids (SGF) in various temperature conditions. Aim: This study aimed to establish a simple, sensitive, and rapid RP HPLC method for in-vitro determination of Pantoprazole Sodium and its degradation products in simulated gastric and intestinal fluids. Objective: Pantoprazole is acid labile drug. In order to determine pantoprazole in various oral dosage forms, the stability-indicating assay of PPZ was performed in phosphate buffer (pH 6.8) representing simulated intestinal fluid (SIF) and in 0.1 molars (M) Hydrochloric acid (HCl) as simulated gastric fluid (SGF) at two different temperature conditions, i.e., 25°C and 0°C, respectively. Method: Pantoprazole sodium was obtained from the Akums laboratory in Haridwar. The analysis was performed by high-performance liquid chromatography (HPLC), Shimadzu, equipped with two LC-10 AD VP solvent-delivery modules, a SPD-10A UV–-visible detector, and a manual injector valve with 20 μL sample loop. Phenomenex ODS analytical column (150 mm × 4.6 mm i.d., 5 μm particles) was done under reversed-phase partition chromatographic conditions. The mobile phase was phosphate buffer and acetonitrile (ACN) of pH 7.4, respectively, optimized in a 70:30 (v/v) ratio followed by filtration through a 0.45 μm membrane filter and degassed by ultrasonicator before use. The mobile phase was delivered at the flow rate of 2 mL/min. The various parameters, such as linearity, accuracy and precision of the analytical method, were studied. Result: The standard curve of PPZ was linear (R2>0.99) over the concentration range of 5-30 μg/mL, and the relative standard deviation (RSD) values for intra-day and inter-day variations were in the range of 1.0-1.8%. The range of RSD was within ±2. Conclusion: The stability of PPZ in aqueous solution was pH dependent. The rate of degradation increases with decreasing pH. The pH stability of pantoprazole was studied at the above-mentioned temperature conditions. The PPZ peaks were analyzed by comparing them with fresh samples and were stable in SIF solution after 24 hours elapsed time at pH 6.8. The obtained degraded peaks in SGF (pH 1) were successfully separated from the PPZ.","PeriodicalId":10889,"journal":{"name":"Current Pharmaceutical Analysis","volume":"42 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Indicating HPLC Method for In-Vitro Determination of Pantoprazole Sodium and its Degradation Products in Simulated Gastric and Intestinal Fluids\",\"authors\":\"Avani Gupta, Juber Akhtar, Kailash Chandra Rastogi, Badruddeen, Mohammad Irfan Khan, Mohammad Ahmad\",\"doi\":\"10.2174/0115734129254806231127110951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: A high-performance liquid chromatography (HPLC) method was developed for the determination of Pantoprazole Sodium (PPZ) in the presence of its degradation products. The degradation of PPZ was studied in simulated intestinal fluid (SIF) and simulated gastric fluids (SGF) in various temperature conditions. Aim: This study aimed to establish a simple, sensitive, and rapid RP HPLC method for in-vitro determination of Pantoprazole Sodium and its degradation products in simulated gastric and intestinal fluids. Objective: Pantoprazole is acid labile drug. In order to determine pantoprazole in various oral dosage forms, the stability-indicating assay of PPZ was performed in phosphate buffer (pH 6.8) representing simulated intestinal fluid (SIF) and in 0.1 molars (M) Hydrochloric acid (HCl) as simulated gastric fluid (SGF) at two different temperature conditions, i.e., 25°C and 0°C, respectively. Method: Pantoprazole sodium was obtained from the Akums laboratory in Haridwar. The analysis was performed by high-performance liquid chromatography (HPLC), Shimadzu, equipped with two LC-10 AD VP solvent-delivery modules, a SPD-10A UV–-visible detector, and a manual injector valve with 20 μL sample loop. Phenomenex ODS analytical column (150 mm × 4.6 mm i.d., 5 μm particles) was done under reversed-phase partition chromatographic conditions. The mobile phase was phosphate buffer and acetonitrile (ACN) of pH 7.4, respectively, optimized in a 70:30 (v/v) ratio followed by filtration through a 0.45 μm membrane filter and degassed by ultrasonicator before use. The mobile phase was delivered at the flow rate of 2 mL/min. The various parameters, such as linearity, accuracy and precision of the analytical method, were studied. Result: The standard curve of PPZ was linear (R2>0.99) over the concentration range of 5-30 μg/mL, and the relative standard deviation (RSD) values for intra-day and inter-day variations were in the range of 1.0-1.8%. The range of RSD was within ±2. Conclusion: The stability of PPZ in aqueous solution was pH dependent. The rate of degradation increases with decreasing pH. The pH stability of pantoprazole was studied at the above-mentioned temperature conditions. The PPZ peaks were analyzed by comparing them with fresh samples and were stable in SIF solution after 24 hours elapsed time at pH 6.8. The obtained degraded peaks in SGF (pH 1) were successfully separated from the PPZ.\",\"PeriodicalId\":10889,\"journal\":{\"name\":\"Current Pharmaceutical Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pharmaceutical Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734129254806231127110951\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pharmaceutical Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734129254806231127110951","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景:建立了测定泮托拉唑钠(PPZ)降解产物的高效液相色谱(HPLC)方法。研究了在不同温度条件下模拟肠液(SIF)和模拟胃液(SGF)中 PPZ 的降解情况。目的:本研究旨在建立一种简单、灵敏、快速的 RP HPLC 方法,用于体外测定模拟胃液和模拟肠液中的泮托拉唑钠及其降解产物。研究目的泮托拉唑是一种酸性药物。为了测定各种口服剂型中的泮托拉唑,分别在 25°C 和 0°C 两种不同温度条件下,在代表模拟肠液(SIF)的磷酸盐缓冲液(pH 值为 6.8)和代表模拟胃液(SGF)的 0.1 摩尔盐酸(HCl)中进行了泮托拉唑的稳定性指示检测。方法泮托拉唑钠从哈里德瓦尔的 Akums 实验室获得。分析采用岛津公司的高效液相色谱法(HPLC),配有两个 LC-10 AD VP 溶剂输送模块、一个 SPD-10A 紫外可见检测器和一个带 20 μL 样品环的手动进样阀。在反相分配色谱条件下,采用 Phenomenex ODS 分析柱(150 毫米×4.6 毫米内径,5 微米颗粒)。流动相为 pH 值为 7.4 的磷酸盐缓冲液和乙腈(ACN),优化比例为 70:30(v/v),然后用 0.45 μm 的膜过滤器过滤,使用前用超声波器脱气。流动相流速为 2 mL/min。对分析方法的线性、准确度和精密度等参数进行了研究。结果表明PPZ的标准曲线在5-30 μg/mL浓度范围内线性关系良好(R2>0.99),日内和日间相对标准偏差(RSD)在1.0-1.8%之间。结论:PPZ 在水溶液中的稳定性良好:PPZ 在水溶液中的稳定性与 pH 值有关。降解率随 pH 值的降低而增加。研究了泮托拉唑在上述温度条件下的 pH 稳定性。通过与新鲜样品进行比较,分析了泮托拉唑在 pH 值为 6.8 的 SIF 溶液中 24 小时后的稳定性。在 SGF(pH 1)中得到的降解峰成功地从 PPZ 中分离出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability Indicating HPLC Method for In-Vitro Determination of Pantoprazole Sodium and its Degradation Products in Simulated Gastric and Intestinal Fluids
Background: A high-performance liquid chromatography (HPLC) method was developed for the determination of Pantoprazole Sodium (PPZ) in the presence of its degradation products. The degradation of PPZ was studied in simulated intestinal fluid (SIF) and simulated gastric fluids (SGF) in various temperature conditions. Aim: This study aimed to establish a simple, sensitive, and rapid RP HPLC method for in-vitro determination of Pantoprazole Sodium and its degradation products in simulated gastric and intestinal fluids. Objective: Pantoprazole is acid labile drug. In order to determine pantoprazole in various oral dosage forms, the stability-indicating assay of PPZ was performed in phosphate buffer (pH 6.8) representing simulated intestinal fluid (SIF) and in 0.1 molars (M) Hydrochloric acid (HCl) as simulated gastric fluid (SGF) at two different temperature conditions, i.e., 25°C and 0°C, respectively. Method: Pantoprazole sodium was obtained from the Akums laboratory in Haridwar. The analysis was performed by high-performance liquid chromatography (HPLC), Shimadzu, equipped with two LC-10 AD VP solvent-delivery modules, a SPD-10A UV–-visible detector, and a manual injector valve with 20 μL sample loop. Phenomenex ODS analytical column (150 mm × 4.6 mm i.d., 5 μm particles) was done under reversed-phase partition chromatographic conditions. The mobile phase was phosphate buffer and acetonitrile (ACN) of pH 7.4, respectively, optimized in a 70:30 (v/v) ratio followed by filtration through a 0.45 μm membrane filter and degassed by ultrasonicator before use. The mobile phase was delivered at the flow rate of 2 mL/min. The various parameters, such as linearity, accuracy and precision of the analytical method, were studied. Result: The standard curve of PPZ was linear (R2>0.99) over the concentration range of 5-30 μg/mL, and the relative standard deviation (RSD) values for intra-day and inter-day variations were in the range of 1.0-1.8%. The range of RSD was within ±2. Conclusion: The stability of PPZ in aqueous solution was pH dependent. The rate of degradation increases with decreasing pH. The pH stability of pantoprazole was studied at the above-mentioned temperature conditions. The PPZ peaks were analyzed by comparing them with fresh samples and were stable in SIF solution after 24 hours elapsed time at pH 6.8. The obtained degraded peaks in SGF (pH 1) were successfully separated from the PPZ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
85
审稿时长
3 months
期刊介绍: Aims & Scope Current Pharmaceutical Analysis publishes expert reviews and original research articles on all the most recent advances in pharmaceutical and biomedical analysis. All aspects of the field are represented including drug analysis, analytical methodology and instrumentation. The journal is essential to all involved in pharmaceutical, biochemical and clinical analysis.
期刊最新文献
Simultaneous Estimation of Pregabalin and Duloxetine Used to Treat Nerve Pain by Stability Indicating RP-HPLC Method Using the QBD Approach Research on Compatibility of Packaging Materials of High-Risk Cephalosporin Powder Injection and Establishment of Indicator Component Evaluation Method Universally Applicable Methods for Comprehensive Risk Assessment of Elemental Impurities in Vitamin A and D Preparations An Overview of Biotechnological Drug’s Various Techniques of Downstream Process, Guideline’s And Different Chromatographic Analysis Validation of GF-AAS Method for the Determination of Aluminium Content in Human Albumin Finished Product
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1