具有随机交叉连接的神经系统的多稳定性

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS Biological Cybernetics Pub Date : 2023-12-01 Epub Date: 2023-12-22 DOI:10.1007/s00422-023-00981-w
Jordan Breffle, Subhadra Mokashe, Siwei Qiu, Paul Miller
{"title":"具有随机交叉连接的神经系统的多稳定性","authors":"Jordan Breffle, Subhadra Mokashe, Siwei Qiu, Paul Miller","doi":"10.1007/s00422-023-00981-w","DOIUrl":null,"url":null,"abstract":"<p><p>Neural circuits with multiple discrete attractor states could support a variety of cognitive tasks according to both empirical data and model simulations. We assess the conditions for such multistability in neural systems using a firing rate model framework, in which clusters of similarly responsive neurons are represented as single units, which interact with each other through independent random connections. We explore the range of conditions in which multistability arises via recurrent input from other units while individual units, typically with some degree of self-excitation, lack sufficient self-excitation to become bistable on their own. We find many cases of multistability-defined as the system possessing more than one stable fixed point-in which stable states arise via a network effect, allowing subsets of units to maintain each others' activity because their net input to each other when active is sufficiently positive. In terms of the strength of within-unit self-excitation and standard deviation of random cross-connections, the region of multistability depends on the response function of units. Indeed, multistability can arise with zero self-excitation, purely through zero-mean random cross-connections, if the response function rises supralinearly at low inputs from a value near zero at zero input. We simulate and analyze finite systems, showing that the probability of multistability can peak at intermediate system size, and connect with other literature analyzing similar systems in the infinite-size limit. We find regions of multistability with a bimodal distribution for the number of active units in a stable state. Finally, we find evidence for a log-normal distribution of sizes of attractor basins, which produces Zipf's Law when enumerating the proportion of trials within which random initial conditions lead to a particular stable state of the system.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistability in neural systems with random cross-connections.\",\"authors\":\"Jordan Breffle, Subhadra Mokashe, Siwei Qiu, Paul Miller\",\"doi\":\"10.1007/s00422-023-00981-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural circuits with multiple discrete attractor states could support a variety of cognitive tasks according to both empirical data and model simulations. We assess the conditions for such multistability in neural systems using a firing rate model framework, in which clusters of similarly responsive neurons are represented as single units, which interact with each other through independent random connections. We explore the range of conditions in which multistability arises via recurrent input from other units while individual units, typically with some degree of self-excitation, lack sufficient self-excitation to become bistable on their own. We find many cases of multistability-defined as the system possessing more than one stable fixed point-in which stable states arise via a network effect, allowing subsets of units to maintain each others' activity because their net input to each other when active is sufficiently positive. In terms of the strength of within-unit self-excitation and standard deviation of random cross-connections, the region of multistability depends on the response function of units. Indeed, multistability can arise with zero self-excitation, purely through zero-mean random cross-connections, if the response function rises supralinearly at low inputs from a value near zero at zero input. We simulate and analyze finite systems, showing that the probability of multistability can peak at intermediate system size, and connect with other literature analyzing similar systems in the infinite-size limit. We find regions of multistability with a bimodal distribution for the number of active units in a stable state. Finally, we find evidence for a log-normal distribution of sizes of attractor basins, which produces Zipf's Law when enumerating the proportion of trials within which random initial conditions lead to a particular stable state of the system.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-023-00981-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-023-00981-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

根据经验数据和模型模拟,具有多个离散吸引子状态的神经回路可以支持各种认知任务。我们使用一个发射率模型框架来评估神经系统中这种多稳态性的条件,在这个框架中,反应相似的神经元群被表示为单个单元,它们通过独立的随机连接相互影响。我们探索了一系列条件,在这些条件中,多稳态性是通过其他单元的循环输入产生的,而单个单元(通常具有一定程度的自激性)则缺乏足够的自激性,因而无法独立成为双稳态。我们发现了许多多稳定性的案例--多稳定性被定义为系统拥有一个以上的稳定定点,其中的稳定状态是通过网络效应产生的,它允许子单元集维持彼此的活动,因为它们在活动时对彼此的净输入是足够正的。就单位内部自激的强度和随机交叉连接的标准偏差而言,多稳态区域取决于单位的响应函数。事实上,如果响应函数在低输入时从零输入时的近零值超线性上升,那么多稳定性可以在零自激的情况下产生,而这纯粹是通过零均值随机交叉连接实现的。我们对有限系统进行了模拟和分析,结果表明多稳定性概率在系统规模达到中间值时可以达到峰值,并与分析无限大极限下类似系统的其他文献相联系。我们发现多稳态区域的稳定状态下活动单元的数量呈双峰分布。最后,我们发现吸引盆地的大小呈对数正态分布,在列举随机初始条件导致系统进入特定稳定状态的试验比例时,会产生齐普夫定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multistability in neural systems with random cross-connections.

Neural circuits with multiple discrete attractor states could support a variety of cognitive tasks according to both empirical data and model simulations. We assess the conditions for such multistability in neural systems using a firing rate model framework, in which clusters of similarly responsive neurons are represented as single units, which interact with each other through independent random connections. We explore the range of conditions in which multistability arises via recurrent input from other units while individual units, typically with some degree of self-excitation, lack sufficient self-excitation to become bistable on their own. We find many cases of multistability-defined as the system possessing more than one stable fixed point-in which stable states arise via a network effect, allowing subsets of units to maintain each others' activity because their net input to each other when active is sufficiently positive. In terms of the strength of within-unit self-excitation and standard deviation of random cross-connections, the region of multistability depends on the response function of units. Indeed, multistability can arise with zero self-excitation, purely through zero-mean random cross-connections, if the response function rises supralinearly at low inputs from a value near zero at zero input. We simulate and analyze finite systems, showing that the probability of multistability can peak at intermediate system size, and connect with other literature analyzing similar systems in the infinite-size limit. We find regions of multistability with a bimodal distribution for the number of active units in a stable state. Finally, we find evidence for a log-normal distribution of sizes of attractor basins, which produces Zipf's Law when enumerating the proportion of trials within which random initial conditions lead to a particular stable state of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
期刊最新文献
Phase response curves and the role of coordinates. Neuroscientific insights about computer vision models: a concise review. Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse Can a Hebbian-like learning rule be avoiding the curse of dimensionality in sparse distributed data? Variational analysis of sensory feedback mechanisms in powerstroke-recovery systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1