Gennadi Mikhasev , Enrico Radi , Vyacheslav Misnik
{"title":"基于非局部弹性理论的静电和范德华吸引下的 CNT 纳米镊子拉入不稳定性建模","authors":"Gennadi Mikhasev , Enrico Radi , Vyacheslav Misnik","doi":"10.1016/j.ijengsci.2023.104012","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This work investigates the electromechanical response and pull-in instability of an electrostatically-actuated CNT tweezer taking into consideration a TPNL constitutive behavior of the CNTs as well as the intermolecular forces, both of which provide a significant contribution at the nanoscale. The nonlocal response of the material introduces two additional parameters in the formulation, which are effective in capturing the size effects observed at the nanoscale. The problem is governed by a nonlinear integrodifferential equation, which can be reduced to a sixth-order nonlinear ODE with two additional boundary conditions accounting for the nonlocal effects near to the CNT edges. A simplified model of the device is proposed based on the assumption of a linear or parabolic distribution of the loading acting on the CNTs. This assumption allows us to formulate the problem in terms of a linear ODE subject to two-point boundary conditions, which can be solved analytically. The results are interesting for </span>MEMS and NEMS design. They show that strong coupling occurs between the intermolecular forces and the characteristic material lengths as smaller structure sizes are considered. Considering the influence of the nonlocal constitutive behavior and intermolecular forces in CNT tweezers will equip these devices with reliability and functional sensitivity, as required for modern </span>engineering applications.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"195 ","pages":"Article 104012"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling pull-in instability of CNT nanotweezers under electrostatic and van der Waals attractions based on the nonlocal theory of elasticity\",\"authors\":\"Gennadi Mikhasev , Enrico Radi , Vyacheslav Misnik\",\"doi\":\"10.1016/j.ijengsci.2023.104012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>This work investigates the electromechanical response and pull-in instability of an electrostatically-actuated CNT tweezer taking into consideration a TPNL constitutive behavior of the CNTs as well as the intermolecular forces, both of which provide a significant contribution at the nanoscale. The nonlocal response of the material introduces two additional parameters in the formulation, which are effective in capturing the size effects observed at the nanoscale. The problem is governed by a nonlinear integrodifferential equation, which can be reduced to a sixth-order nonlinear ODE with two additional boundary conditions accounting for the nonlocal effects near to the CNT edges. A simplified model of the device is proposed based on the assumption of a linear or parabolic distribution of the loading acting on the CNTs. This assumption allows us to formulate the problem in terms of a linear ODE subject to two-point boundary conditions, which can be solved analytically. The results are interesting for </span>MEMS and NEMS design. They show that strong coupling occurs between the intermolecular forces and the characteristic material lengths as smaller structure sizes are considered. Considering the influence of the nonlocal constitutive behavior and intermolecular forces in CNT tweezers will equip these devices with reliability and functional sensitivity, as required for modern </span>engineering applications.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"195 \",\"pages\":\"Article 104012\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722523002033\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722523002033","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Modeling pull-in instability of CNT nanotweezers under electrostatic and van der Waals attractions based on the nonlocal theory of elasticity
This work investigates the electromechanical response and pull-in instability of an electrostatically-actuated CNT tweezer taking into consideration a TPNL constitutive behavior of the CNTs as well as the intermolecular forces, both of which provide a significant contribution at the nanoscale. The nonlocal response of the material introduces two additional parameters in the formulation, which are effective in capturing the size effects observed at the nanoscale. The problem is governed by a nonlinear integrodifferential equation, which can be reduced to a sixth-order nonlinear ODE with two additional boundary conditions accounting for the nonlocal effects near to the CNT edges. A simplified model of the device is proposed based on the assumption of a linear or parabolic distribution of the loading acting on the CNTs. This assumption allows us to formulate the problem in terms of a linear ODE subject to two-point boundary conditions, which can be solved analytically. The results are interesting for MEMS and NEMS design. They show that strong coupling occurs between the intermolecular forces and the characteristic material lengths as smaller structure sizes are considered. Considering the influence of the nonlocal constitutive behavior and intermolecular forces in CNT tweezers will equip these devices with reliability and functional sensitivity, as required for modern engineering applications.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.