{"title":"作为抗菌剂的新型磺酰胺基苯并恶唑衍生物:设计、合成和生物学评价","authors":"Meryem Erol, Cemre ACAR-HALICI, Gülcan Kuyucuklu, Alparslan Semih Salan, Özlem TEMİZ-ARPACI","doi":"10.33483/jfpau.1341483","DOIUrl":null,"url":null,"abstract":"Objective: Many investigations are conducted in the battle against infectious diseases in order to develop new drug-active ingredient candidate compounds and to identify leading compounds. The goal of this study was to synthesis a total of seven compounds, six of which are novel, with the general structure 2-(4-tert-butylphenyl)-5-(4-substitutedphenylsulfonamido)benzoxazole, to elucidate their structures, and to test their antimicrobial activities using the microdilution method.\nMaterial and Method: The synthesis of the compounds was carried out in two stages. In the first stage, under PPA catalyst 2,4-diaminophenol and 4-tert-butylbenzoic acid were refluxed, and target compounds were produced in the second step by reacting 4-substitutedbenzenesulfonyl chloride with 5-Amino-2-(4-tert-butylphenyl)benzoxazole. The compounds' antimicrobial activity was determined by using Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and drug-resistant strains of these microorganisms in vitro antimicrobial activity studies. Furthermore, estimated ADME profiles were calculated using the SwissADME online software.\nResult and Discussion: The structures of the synthesized compounds were elucidated using 1H-NMR, 13C-NMR and Mass spectroscopy, and also their melting points were determined. The antimicrobial activities of the compounds ranged from 64 µg/ml to ˃512 µg/ml and were weaker than the reference drugs. The best antimicrobial activity was reported against an isolate of E. faecalis, with all compounds having MIC values of 64 µg/ml. The fact that six of the seven synthesized compounds are novel and that their antimicrobial activity will be tested for the first time will make a significant contribution to studies to develop new or alternative antimicrobial agents.","PeriodicalId":7891,"journal":{"name":"Ankara Universitesi Eczacilik Fakultesi Dergisi","volume":"83 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEW SULFONAMIDO-BENZOXAZOLE DERIVATIVES AS ANTIMICROBIAL AGENTS: DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION\",\"authors\":\"Meryem Erol, Cemre ACAR-HALICI, Gülcan Kuyucuklu, Alparslan Semih Salan, Özlem TEMİZ-ARPACI\",\"doi\":\"10.33483/jfpau.1341483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Many investigations are conducted in the battle against infectious diseases in order to develop new drug-active ingredient candidate compounds and to identify leading compounds. The goal of this study was to synthesis a total of seven compounds, six of which are novel, with the general structure 2-(4-tert-butylphenyl)-5-(4-substitutedphenylsulfonamido)benzoxazole, to elucidate their structures, and to test their antimicrobial activities using the microdilution method.\\nMaterial and Method: The synthesis of the compounds was carried out in two stages. In the first stage, under PPA catalyst 2,4-diaminophenol and 4-tert-butylbenzoic acid were refluxed, and target compounds were produced in the second step by reacting 4-substitutedbenzenesulfonyl chloride with 5-Amino-2-(4-tert-butylphenyl)benzoxazole. The compounds' antimicrobial activity was determined by using Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and drug-resistant strains of these microorganisms in vitro antimicrobial activity studies. Furthermore, estimated ADME profiles were calculated using the SwissADME online software.\\nResult and Discussion: The structures of the synthesized compounds were elucidated using 1H-NMR, 13C-NMR and Mass spectroscopy, and also their melting points were determined. The antimicrobial activities of the compounds ranged from 64 µg/ml to ˃512 µg/ml and were weaker than the reference drugs. The best antimicrobial activity was reported against an isolate of E. faecalis, with all compounds having MIC values of 64 µg/ml. The fact that six of the seven synthesized compounds are novel and that their antimicrobial activity will be tested for the first time will make a significant contribution to studies to develop new or alternative antimicrobial agents.\",\"PeriodicalId\":7891,\"journal\":{\"name\":\"Ankara Universitesi Eczacilik Fakultesi Dergisi\",\"volume\":\"83 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ankara Universitesi Eczacilik Fakultesi Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33483/jfpau.1341483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ankara Universitesi Eczacilik Fakultesi Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33483/jfpau.1341483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
NEW SULFONAMIDO-BENZOXAZOLE DERIVATIVES AS ANTIMICROBIAL AGENTS: DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION
Objective: Many investigations are conducted in the battle against infectious diseases in order to develop new drug-active ingredient candidate compounds and to identify leading compounds. The goal of this study was to synthesis a total of seven compounds, six of which are novel, with the general structure 2-(4-tert-butylphenyl)-5-(4-substitutedphenylsulfonamido)benzoxazole, to elucidate their structures, and to test their antimicrobial activities using the microdilution method.
Material and Method: The synthesis of the compounds was carried out in two stages. In the first stage, under PPA catalyst 2,4-diaminophenol and 4-tert-butylbenzoic acid were refluxed, and target compounds were produced in the second step by reacting 4-substitutedbenzenesulfonyl chloride with 5-Amino-2-(4-tert-butylphenyl)benzoxazole. The compounds' antimicrobial activity was determined by using Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and drug-resistant strains of these microorganisms in vitro antimicrobial activity studies. Furthermore, estimated ADME profiles were calculated using the SwissADME online software.
Result and Discussion: The structures of the synthesized compounds were elucidated using 1H-NMR, 13C-NMR and Mass spectroscopy, and also their melting points were determined. The antimicrobial activities of the compounds ranged from 64 µg/ml to ˃512 µg/ml and were weaker than the reference drugs. The best antimicrobial activity was reported against an isolate of E. faecalis, with all compounds having MIC values of 64 µg/ml. The fact that six of the seven synthesized compounds are novel and that their antimicrobial activity will be tested for the first time will make a significant contribution to studies to develop new or alternative antimicrobial agents.