{"title":"利用光子矩阵增强气溶胶散射的蒙特卡罗模拟","authors":"Zhihua Pang, Chengtian Song, Bohu Liu","doi":"10.1063/5.0176129","DOIUrl":null,"url":null,"abstract":"Within aerosol-rich environments, efficient simulation of frequency-modulated continuous wave (FMCW) laser detector echo characteristics is crucial. Conventional methods often need more efficiency. To address this, we propose a photon matrix-based approach for simulating intricate photon scattering processes, enhancing simulation accuracy. This study focuses on short-range FMCW laser detection under aerosol interference, assessing performance via signal-to-noise ratio (SNR). We analyze the impact of amplitude modulation coefficient and photon count on SNR. Surprisingly, the photon count minimally affects SNR, while the amplitude modulation coefficient significantly influences it. These findings shed light on optimizing FMCW laser detection in aerosol-laden environments. Attention to the amplitude modulation coefficient can notably enhance SNR and overall detection efficiency.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"58 49","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Monte Carlo simulations of aerosol scattering using photon matrices\",\"authors\":\"Zhihua Pang, Chengtian Song, Bohu Liu\",\"doi\":\"10.1063/5.0176129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within aerosol-rich environments, efficient simulation of frequency-modulated continuous wave (FMCW) laser detector echo characteristics is crucial. Conventional methods often need more efficiency. To address this, we propose a photon matrix-based approach for simulating intricate photon scattering processes, enhancing simulation accuracy. This study focuses on short-range FMCW laser detection under aerosol interference, assessing performance via signal-to-noise ratio (SNR). We analyze the impact of amplitude modulation coefficient and photon count on SNR. Surprisingly, the photon count minimally affects SNR, while the amplitude modulation coefficient significantly influences it. These findings shed light on optimizing FMCW laser detection in aerosol-laden environments. Attention to the amplitude modulation coefficient can notably enhance SNR and overall detection efficiency.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"58 49\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0176129\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0176129","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Enhancing Monte Carlo simulations of aerosol scattering using photon matrices
Within aerosol-rich environments, efficient simulation of frequency-modulated continuous wave (FMCW) laser detector echo characteristics is crucial. Conventional methods often need more efficiency. To address this, we propose a photon matrix-based approach for simulating intricate photon scattering processes, enhancing simulation accuracy. This study focuses on short-range FMCW laser detection under aerosol interference, assessing performance via signal-to-noise ratio (SNR). We analyze the impact of amplitude modulation coefficient and photon count on SNR. Surprisingly, the photon count minimally affects SNR, while the amplitude modulation coefficient significantly influences it. These findings shed light on optimizing FMCW laser detection in aerosol-laden environments. Attention to the amplitude modulation coefficient can notably enhance SNR and overall detection efficiency.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces