空间强度函数核估计器的非参数自适应带宽选择

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2023-12-22 DOI:10.1007/s10463-023-00890-6
M. N. M. van Lieshout
{"title":"空间强度函数核估计器的非参数自适应带宽选择","authors":"M. N. M. van Lieshout","doi":"10.1007/s10463-023-00890-6","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a new fully non-parametric two-step adaptive bandwidth selection method for kernel estimators of spatial point process intensity functions based on the Campbell–Mecke formula and Abramson’s square root law. We present a simulation study to assess its performance relative to other adaptive and global bandwidth selectors, investigate the influence of the pilot estimator and apply the technique to two data sets: A pattern of trees and an earthquake catalogue.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-parametric adaptive bandwidth selection for kernel estimators of spatial intensity functions\",\"authors\":\"M. N. M. van Lieshout\",\"doi\":\"10.1007/s10463-023-00890-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a new fully non-parametric two-step adaptive bandwidth selection method for kernel estimators of spatial point process intensity functions based on the Campbell–Mecke formula and Abramson’s square root law. We present a simulation study to assess its performance relative to other adaptive and global bandwidth selectors, investigate the influence of the pilot estimator and apply the technique to two data sets: A pattern of trees and an earthquake catalogue.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-023-00890-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00890-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们根据坎贝尔-梅克公式和艾布拉姆森平方根定律,为空间点过程强度函数的核估计器引入了一种新的完全非参数两步自适应带宽选择方法。我们通过模拟研究评估了该方法相对于其他自适应和全局带宽选择器的性能,研究了先导估计器的影响,并将该技术应用于两个数据集:树木模式和地震目录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-parametric adaptive bandwidth selection for kernel estimators of spatial intensity functions

We introduce a new fully non-parametric two-step adaptive bandwidth selection method for kernel estimators of spatial point process intensity functions based on the Campbell–Mecke formula and Abramson’s square root law. We present a simulation study to assess its performance relative to other adaptive and global bandwidth selectors, investigate the influence of the pilot estimator and apply the technique to two data sets: A pattern of trees and an earthquake catalogue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Estimation of value-at-risk by $$L^{p}$$ quantile regression Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field Asymptotic expected sensitivity function and its applications to measures of monotone association Penalized estimation for non-identifiable models Hidden AR process and adaptive Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1