{"title":"空中延误还是地面迂回?--广州白云国际机场案例研究","authors":"Zhuoming Du, Junfeng Zhang, Zhao Ma, Jiaxin Xu","doi":"10.3390/aerospace11010010","DOIUrl":null,"url":null,"abstract":"Collaboration between terminal airspace and airport surface operation shows an increasing significance for the best efficiency of both parts of the air traffic management domain. Runways play a critical role in connecting the two parts for departure and arrival aircraft. Suppose the gate and the entry fix of an aircraft are predetermined according to the flight plan, and they are on the opposite side of the airport terminal. The aircraft will either spend more time (i.e., delay in the air) landing on a runway close to its gate or take a longer distance (i.e., detour on the ground) taxiing to its gate if a runway close to its entry fix is assigned. This paper proposes a runway assignment model considering terminal airspace operation and airport surface movement simultaneously to discover how runway assignments can affect integrated operations. Four different runway assignment schemes are applied in this model. Subsequently, a metaheuristic method is proposed to solve the model. Furthermore, the historical taxiing and flight time data are analyzed to demonstrate the potential benefits of runway reassignment. Finally, the results show that the free assignment of the runway stands out among the four schemes, not only in the performance of terminal airspace operation (lower flight time) but also in airport surface movement (lower pushback delay, taxi time).","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"40 25","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay in the Air or Detour on the Ground?—A Case Study in Guangzhou Baiyun International Airport\",\"authors\":\"Zhuoming Du, Junfeng Zhang, Zhao Ma, Jiaxin Xu\",\"doi\":\"10.3390/aerospace11010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaboration between terminal airspace and airport surface operation shows an increasing significance for the best efficiency of both parts of the air traffic management domain. Runways play a critical role in connecting the two parts for departure and arrival aircraft. Suppose the gate and the entry fix of an aircraft are predetermined according to the flight plan, and they are on the opposite side of the airport terminal. The aircraft will either spend more time (i.e., delay in the air) landing on a runway close to its gate or take a longer distance (i.e., detour on the ground) taxiing to its gate if a runway close to its entry fix is assigned. This paper proposes a runway assignment model considering terminal airspace operation and airport surface movement simultaneously to discover how runway assignments can affect integrated operations. Four different runway assignment schemes are applied in this model. Subsequently, a metaheuristic method is proposed to solve the model. Furthermore, the historical taxiing and flight time data are analyzed to demonstrate the potential benefits of runway reassignment. Finally, the results show that the free assignment of the runway stands out among the four schemes, not only in the performance of terminal airspace operation (lower flight time) but also in airport surface movement (lower pushback delay, taxi time).\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"40 25\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11010010\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010010","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Delay in the Air or Detour on the Ground?—A Case Study in Guangzhou Baiyun International Airport
Collaboration between terminal airspace and airport surface operation shows an increasing significance for the best efficiency of both parts of the air traffic management domain. Runways play a critical role in connecting the two parts for departure and arrival aircraft. Suppose the gate and the entry fix of an aircraft are predetermined according to the flight plan, and they are on the opposite side of the airport terminal. The aircraft will either spend more time (i.e., delay in the air) landing on a runway close to its gate or take a longer distance (i.e., detour on the ground) taxiing to its gate if a runway close to its entry fix is assigned. This paper proposes a runway assignment model considering terminal airspace operation and airport surface movement simultaneously to discover how runway assignments can affect integrated operations. Four different runway assignment schemes are applied in this model. Subsequently, a metaheuristic method is proposed to solve the model. Furthermore, the historical taxiing and flight time data are analyzed to demonstrate the potential benefits of runway reassignment. Finally, the results show that the free assignment of the runway stands out among the four schemes, not only in the performance of terminal airspace operation (lower flight time) but also in airport surface movement (lower pushback delay, taxi time).
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.