{"title":"零一复合优化:李雅普诺夫精确惩罚和全球收敛的不精确增量拉格朗日方法","authors":"Penghe Zhang, Naihua Xiu, Ziyan Luo","doi":"10.1287/moor.2021.0320","DOIUrl":null,"url":null,"abstract":"We consider the problem of minimizing the sum of a smooth function and a composition of a zero-one loss function with a linear operator, namely the zero-one composite optimization problem (0/1-COP). It has a vast body of applications, including the support vector machine (SVM), calcium dynamics fitting (CDF), one-bit compressive sensing (1-bCS), and so on. However, it remains challenging to design a globally convergent algorithm for the original model of 0/1-COP because of the nonconvex and discontinuous zero-one loss function. This paper aims to develop an inexact augmented Lagrangian method (IALM), in which the generated whole sequence converges to a local minimizer of 0/1-COP under reasonable assumptions. In the iteration process, IALM performs minimization on a Lyapunov function with an adaptively adjusted multiplier. The involved Lyapunov penalty subproblem is shown to admit the exact penalty theorem for 0/1-COP, provided that the multiplier is optimal in the sense of the proximal-type stationarity. An efficient zero-one Bregman alternating linearized minimization algorithm is also designed to achieve an approximate solution of the underlying subproblem in finite steps. Numerical experiments for handling SVM, CDF, and 1-bCS demonstrate the satisfactory performance of the proposed method in terms of solution accuracy and time efficiency. Funding: This work was supported by the Fundamental Research Funds for the Central Universities [Grant 2022YJS099] and the National Natural Science Foundation of China [Grants 12131004 and 12271022].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-One Composite Optimization: Lyapunov Exact Penalty and a Globally Convergent Inexact Augmented Lagrangian Method\",\"authors\":\"Penghe Zhang, Naihua Xiu, Ziyan Luo\",\"doi\":\"10.1287/moor.2021.0320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of minimizing the sum of a smooth function and a composition of a zero-one loss function with a linear operator, namely the zero-one composite optimization problem (0/1-COP). It has a vast body of applications, including the support vector machine (SVM), calcium dynamics fitting (CDF), one-bit compressive sensing (1-bCS), and so on. However, it remains challenging to design a globally convergent algorithm for the original model of 0/1-COP because of the nonconvex and discontinuous zero-one loss function. This paper aims to develop an inexact augmented Lagrangian method (IALM), in which the generated whole sequence converges to a local minimizer of 0/1-COP under reasonable assumptions. In the iteration process, IALM performs minimization on a Lyapunov function with an adaptively adjusted multiplier. The involved Lyapunov penalty subproblem is shown to admit the exact penalty theorem for 0/1-COP, provided that the multiplier is optimal in the sense of the proximal-type stationarity. An efficient zero-one Bregman alternating linearized minimization algorithm is also designed to achieve an approximate solution of the underlying subproblem in finite steps. Numerical experiments for handling SVM, CDF, and 1-bCS demonstrate the satisfactory performance of the proposed method in terms of solution accuracy and time efficiency. Funding: This work was supported by the Fundamental Research Funds for the Central Universities [Grant 2022YJS099] and the National Natural Science Foundation of China [Grants 12131004 and 12271022].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2021.0320\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0320","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Zero-One Composite Optimization: Lyapunov Exact Penalty and a Globally Convergent Inexact Augmented Lagrangian Method
We consider the problem of minimizing the sum of a smooth function and a composition of a zero-one loss function with a linear operator, namely the zero-one composite optimization problem (0/1-COP). It has a vast body of applications, including the support vector machine (SVM), calcium dynamics fitting (CDF), one-bit compressive sensing (1-bCS), and so on. However, it remains challenging to design a globally convergent algorithm for the original model of 0/1-COP because of the nonconvex and discontinuous zero-one loss function. This paper aims to develop an inexact augmented Lagrangian method (IALM), in which the generated whole sequence converges to a local minimizer of 0/1-COP under reasonable assumptions. In the iteration process, IALM performs minimization on a Lyapunov function with an adaptively adjusted multiplier. The involved Lyapunov penalty subproblem is shown to admit the exact penalty theorem for 0/1-COP, provided that the multiplier is optimal in the sense of the proximal-type stationarity. An efficient zero-one Bregman alternating linearized minimization algorithm is also designed to achieve an approximate solution of the underlying subproblem in finite steps. Numerical experiments for handling SVM, CDF, and 1-bCS demonstrate the satisfactory performance of the proposed method in terms of solution accuracy and time efficiency. Funding: This work was supported by the Fundamental Research Funds for the Central Universities [Grant 2022YJS099] and the National Natural Science Foundation of China [Grants 12131004 and 12271022].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.