利用 Metarhizium 作为昆虫生物控制剂和植物生物接种剂,特别是在巴西

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2023-12-21 DOI:10.3389/ffunb.2023.1276287
E. Mesquita, Shasha Hu, Tais B. Lima, P. Gôlo, M. Bidochka
{"title":"利用 Metarhizium 作为昆虫生物控制剂和植物生物接种剂,特别是在巴西","authors":"E. Mesquita, Shasha Hu, Tais B. Lima, P. Gôlo, M. Bidochka","doi":"10.3389/ffunb.2023.1276287","DOIUrl":null,"url":null,"abstract":"Brazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus Metarhizium. This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent. This fungus is also a root symbiont, and in this capacity, it is a plant growth promoter. However, this feature (i.e., as a plant symbiont) has yet to be fully explored and implemented in Brazil, although the number of reports demonstrating Metarhizium’s utility as a plant bioinoculant is increasing. The Brazilian bioproduct industry targets agricultural pests, and is limited to two Metarhizium species represented by four fungal isolates as active ingredients. Entomopathogenic fungi have also been successful in controlling arthropods of public health concern, as shown in their control of mosquitoes, which are vectors of diseases. The isolation of new indigenous Metarhizium isolates from a variety of substrates such as soil, insects, and plants shows the wide genetic diversity within this fungal genus. In this review, we emphasize the significance of Metarhizium spp. for the biological control of insects in Brazil. We also suggest that the experience and success of biological control with fungi in Brazil is an important resource for developing integrated pest management and sustainable strategies for pest control worldwide. Moreover, the future implementation prospects of species of Metarhizium being used as bioinoculants and possible new advances in the utility of this fungus are discussed.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of Metarhizium as an insect biocontrol agent and a plant bioinoculant with special reference to Brazil\",\"authors\":\"E. Mesquita, Shasha Hu, Tais B. Lima, P. Gôlo, M. Bidochka\",\"doi\":\"10.3389/ffunb.2023.1276287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus Metarhizium. This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent. This fungus is also a root symbiont, and in this capacity, it is a plant growth promoter. However, this feature (i.e., as a plant symbiont) has yet to be fully explored and implemented in Brazil, although the number of reports demonstrating Metarhizium’s utility as a plant bioinoculant is increasing. The Brazilian bioproduct industry targets agricultural pests, and is limited to two Metarhizium species represented by four fungal isolates as active ingredients. Entomopathogenic fungi have also been successful in controlling arthropods of public health concern, as shown in their control of mosquitoes, which are vectors of diseases. The isolation of new indigenous Metarhizium isolates from a variety of substrates such as soil, insects, and plants shows the wide genetic diversity within this fungal genus. In this review, we emphasize the significance of Metarhizium spp. for the biological control of insects in Brazil. We also suggest that the experience and success of biological control with fungi in Brazil is an important resource for developing integrated pest management and sustainable strategies for pest control worldwide. Moreover, the future implementation prospects of species of Metarhizium being used as bioinoculants and possible new advances in the utility of this fungus are discussed.\",\"PeriodicalId\":73084,\"journal\":{\"name\":\"Frontiers in fungal biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in fungal biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ffunb.2023.1276287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2023.1276287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

巴西使用生物防治的历史悠久,是甘蔗农业中使用生物防治计划最多的国家。这一成就至少部分归功于对昆虫病原真菌 Metarhizium 的利用。这种著名的真菌属对多种节肢动物宿主具有致病性,已被全球用作生物控制剂。这种真菌也是根系的共生体,因此能促进植物生长。不过,尽管证明 Metarhizium 可用作植物生物接种剂的报告数量正在增加,但巴西尚未充分探索和实施这一特性(即作为植物共生体)。巴西的生物产品产业以农业害虫为目标,其有效成分仅限于以四种真菌分离物为代表的两种 Metarhizium。昆虫病原真菌也成功地控制了与公共卫生有关的节肢动物,如对疾病传播媒介蚊子的控制。从土壤、昆虫和植物等多种基质中分离出新的本地 Metarhizium 分离物,显示了该真菌属内部广泛的遗传多样性。在这篇综述中,我们强调了 Metarhizium 对巴西昆虫生物防治的重要意义。我们还认为,巴西在利用真菌进行生物防治方面的经验和成功,是全球虫害综合治理和可持续虫害防治战略发展的重要资源。此外,我们还讨论了将 Metarhizium 菌种用作生物接种剂的未来实施前景,以及这种真菌的用途可能取得的新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of Metarhizium as an insect biocontrol agent and a plant bioinoculant with special reference to Brazil
Brazil has a long history of using biological control and has the largest program in sugarcane agriculture to which a biocontrol program has been applied. This achievement is at least partly due to the utilization of the entomopathogenic fungus Metarhizium. This well-known fungal genus exhibits pathogenicity against a broad range of arthropod hosts and has been used globally as a biocontrol agent. This fungus is also a root symbiont, and in this capacity, it is a plant growth promoter. However, this feature (i.e., as a plant symbiont) has yet to be fully explored and implemented in Brazil, although the number of reports demonstrating Metarhizium’s utility as a plant bioinoculant is increasing. The Brazilian bioproduct industry targets agricultural pests, and is limited to two Metarhizium species represented by four fungal isolates as active ingredients. Entomopathogenic fungi have also been successful in controlling arthropods of public health concern, as shown in their control of mosquitoes, which are vectors of diseases. The isolation of new indigenous Metarhizium isolates from a variety of substrates such as soil, insects, and plants shows the wide genetic diversity within this fungal genus. In this review, we emphasize the significance of Metarhizium spp. for the biological control of insects in Brazil. We also suggest that the experience and success of biological control with fungi in Brazil is an important resource for developing integrated pest management and sustainable strategies for pest control worldwide. Moreover, the future implementation prospects of species of Metarhizium being used as bioinoculants and possible new advances in the utility of this fungus are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Corrigendum: The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. Dual-RNA-sequencing to elucidate the interactions between sorghum and Colletotrichum sublineola. Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell formation in Cryptococcus neoformans. Antagonistic interactions between maize seeds microbiome species and the late wilt disease agent, Magnaporthiopsis maydis. Opportunities for optimizing fungal biological control agents for long-term and effective management of insect pests of orchards and vineyards: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1