Daniel C. Amargianitakis, Rodney H. Self, Antonio J. Torija, Anderson R. Proença, Athanasios P. Synodinos
{"title":"估算螺旋桨零排放氢气飞机的噪声-功率-距离曲线","authors":"Daniel C. Amargianitakis, Rodney H. Self, Antonio J. Torija, Anderson R. Proença, Athanasios P. Synodinos","doi":"10.2514/1.c037194","DOIUrl":null,"url":null,"abstract":"As part of the UK Research and Innovation project New Aviation, Propulsion, Knowledge and Innovation Network (NAPKIN), a high-level framework was developed for the assessment of the noise impact of the proposed regional-sized hydrogen-powered aircraft. This study consists of the methodology used to generate the industry-standard noise–power–distance (NPD) curves from individual component noise analysis, specifically propeller tonal noise. The model is based on an asymptotic analysis of a frequency domain propeller tonal noise model combined with a linear approximation, taking advantage of the logarithmic nature of noise. An error analysis on the linear approximation assumption proves that the relative error between predicted and actual values of the noise remains below 10% for appropriately chosen baseline points. Verification of the framework was achieved through a bench-marking procedure that compared predictions of departure NPD curves for current technology regional aircraft against published ones over a range of operational power settings. Finally, departure and approach NPD predictions for three of the NAPKIN hydrogen concept aircraft are presented. Concepts featuring a larger, slower-rotating propeller with an increased number of blades relative to the reference aircraft showed benefits over the reference aircraft, despite, in some cases, increases in maximum takeoff weight.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"56 39","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Estimating Noise–Power–Distance Curves for Propeller-Powered Zero-Emission Hydrogen Aircraft\",\"authors\":\"Daniel C. Amargianitakis, Rodney H. Self, Antonio J. Torija, Anderson R. Proença, Athanasios P. Synodinos\",\"doi\":\"10.2514/1.c037194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of the UK Research and Innovation project New Aviation, Propulsion, Knowledge and Innovation Network (NAPKIN), a high-level framework was developed for the assessment of the noise impact of the proposed regional-sized hydrogen-powered aircraft. This study consists of the methodology used to generate the industry-standard noise–power–distance (NPD) curves from individual component noise analysis, specifically propeller tonal noise. The model is based on an asymptotic analysis of a frequency domain propeller tonal noise model combined with a linear approximation, taking advantage of the logarithmic nature of noise. An error analysis on the linear approximation assumption proves that the relative error between predicted and actual values of the noise remains below 10% for appropriately chosen baseline points. Verification of the framework was achieved through a bench-marking procedure that compared predictions of departure NPD curves for current technology regional aircraft against published ones over a range of operational power settings. Finally, departure and approach NPD predictions for three of the NAPKIN hydrogen concept aircraft are presented. Concepts featuring a larger, slower-rotating propeller with an increased number of blades relative to the reference aircraft showed benefits over the reference aircraft, despite, in some cases, increases in maximum takeoff weight.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\"56 39\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037194\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037194","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Toward Estimating Noise–Power–Distance Curves for Propeller-Powered Zero-Emission Hydrogen Aircraft
As part of the UK Research and Innovation project New Aviation, Propulsion, Knowledge and Innovation Network (NAPKIN), a high-level framework was developed for the assessment of the noise impact of the proposed regional-sized hydrogen-powered aircraft. This study consists of the methodology used to generate the industry-standard noise–power–distance (NPD) curves from individual component noise analysis, specifically propeller tonal noise. The model is based on an asymptotic analysis of a frequency domain propeller tonal noise model combined with a linear approximation, taking advantage of the logarithmic nature of noise. An error analysis on the linear approximation assumption proves that the relative error between predicted and actual values of the noise remains below 10% for appropriately chosen baseline points. Verification of the framework was achieved through a bench-marking procedure that compared predictions of departure NPD curves for current technology regional aircraft against published ones over a range of operational power settings. Finally, departure and approach NPD predictions for three of the NAPKIN hydrogen concept aircraft are presented. Concepts featuring a larger, slower-rotating propeller with an increased number of blades relative to the reference aircraft showed benefits over the reference aircraft, despite, in some cases, increases in maximum takeoff weight.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.