D. Hevisov, Dominik Reitzle, A. Liemert, A. Kienle
{"title":"基于积分方程的加速蒙特卡罗模拟方差缩小法","authors":"D. Hevisov, Dominik Reitzle, A. Liemert, A. Kienle","doi":"10.3390/photonics11010005","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel variance reduction approach utilising the integral formulation of the radiative transfer equation to calculate the radiance in a planar symmetric slab geometry. Due to its integral nature, our method offers a fundamental advantage over well-established variance reduction methods such as the local estimate technique. As opposed to the local estimate procedure, photons add to the overall radiance not only at specific points of interaction but also throughout each consecutive path element; hence, our variance reduction approach can be thought of as an integral local estimate method. This facilitates a substantial enhancement in statistical efficiency, especially in scenarios where only a small number of scattering events or a high attenuation along the detection paths is to be anticipated. To evaluate the overall performance of the integral approach, we incorporated it into a self-developed GPU-accelerated Monte Carlo software, together with a conventional local estimate implementation adapted to slab geometry for a comprehensive comparison.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"61 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integral-Equation-Based Variance Reduction Method for Accelerated Monte Carlo Simulations\",\"authors\":\"D. Hevisov, Dominik Reitzle, A. Liemert, A. Kienle\",\"doi\":\"10.3390/photonics11010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a novel variance reduction approach utilising the integral formulation of the radiative transfer equation to calculate the radiance in a planar symmetric slab geometry. Due to its integral nature, our method offers a fundamental advantage over well-established variance reduction methods such as the local estimate technique. As opposed to the local estimate procedure, photons add to the overall radiance not only at specific points of interaction but also throughout each consecutive path element; hence, our variance reduction approach can be thought of as an integral local estimate method. This facilitates a substantial enhancement in statistical efficiency, especially in scenarios where only a small number of scattering events or a high attenuation along the detection paths is to be anticipated. To evaluate the overall performance of the integral approach, we incorporated it into a self-developed GPU-accelerated Monte Carlo software, together with a conventional local estimate implementation adapted to slab geometry for a comprehensive comparison.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"61 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010005\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010005","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
An Integral-Equation-Based Variance Reduction Method for Accelerated Monte Carlo Simulations
In this work, we introduce a novel variance reduction approach utilising the integral formulation of the radiative transfer equation to calculate the radiance in a planar symmetric slab geometry. Due to its integral nature, our method offers a fundamental advantage over well-established variance reduction methods such as the local estimate technique. As opposed to the local estimate procedure, photons add to the overall radiance not only at specific points of interaction but also throughout each consecutive path element; hence, our variance reduction approach can be thought of as an integral local estimate method. This facilitates a substantial enhancement in statistical efficiency, especially in scenarios where only a small number of scattering events or a high attenuation along the detection paths is to be anticipated. To evaluate the overall performance of the integral approach, we incorporated it into a self-developed GPU-accelerated Monte Carlo software, together with a conventional local estimate implementation adapted to slab geometry for a comprehensive comparison.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.