基于积分方程的加速蒙特卡罗模拟方差缩小法

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2023-12-21 DOI:10.3390/photonics11010005
D. Hevisov, Dominik Reitzle, A. Liemert, A. Kienle
{"title":"基于积分方程的加速蒙特卡罗模拟方差缩小法","authors":"D. Hevisov, Dominik Reitzle, A. Liemert, A. Kienle","doi":"10.3390/photonics11010005","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel variance reduction approach utilising the integral formulation of the radiative transfer equation to calculate the radiance in a planar symmetric slab geometry. Due to its integral nature, our method offers a fundamental advantage over well-established variance reduction methods such as the local estimate technique. As opposed to the local estimate procedure, photons add to the overall radiance not only at specific points of interaction but also throughout each consecutive path element; hence, our variance reduction approach can be thought of as an integral local estimate method. This facilitates a substantial enhancement in statistical efficiency, especially in scenarios where only a small number of scattering events or a high attenuation along the detection paths is to be anticipated. To evaluate the overall performance of the integral approach, we incorporated it into a self-developed GPU-accelerated Monte Carlo software, together with a conventional local estimate implementation adapted to slab geometry for a comprehensive comparison.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"61 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integral-Equation-Based Variance Reduction Method for Accelerated Monte Carlo Simulations\",\"authors\":\"D. Hevisov, Dominik Reitzle, A. Liemert, A. Kienle\",\"doi\":\"10.3390/photonics11010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a novel variance reduction approach utilising the integral formulation of the radiative transfer equation to calculate the radiance in a planar symmetric slab geometry. Due to its integral nature, our method offers a fundamental advantage over well-established variance reduction methods such as the local estimate technique. As opposed to the local estimate procedure, photons add to the overall radiance not only at specific points of interaction but also throughout each consecutive path element; hence, our variance reduction approach can be thought of as an integral local estimate method. This facilitates a substantial enhancement in statistical efficiency, especially in scenarios where only a small number of scattering events or a high attenuation along the detection paths is to be anticipated. To evaluate the overall performance of the integral approach, we incorporated it into a self-developed GPU-accelerated Monte Carlo software, together with a conventional local estimate implementation adapted to slab geometry for a comprehensive comparison.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"61 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010005\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010005","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们介绍了一种新颖的方差缩小方法,利用辐射传递方程的积分公式来计算平面对称板几何形状中的辐射度。由于其积分性质,我们的方法与局部估计技术等成熟的方差缩小方法相比具有根本性的优势。与局部估计程序不同的是,光子不仅会在特定的相互作用点增加整体辐射度,而且会在每个连续的路径元素中增加整体辐射度;因此,我们的方差缩小方法可以看作是一种整体局部估计方法。这有助于大幅提高统计效率,尤其是在预计只有少量散射事件或探测路径上有较高衰减的情况下。为了评估积分方法的整体性能,我们将其纳入了自主开发的 GPU 加速蒙特卡罗软件,并与适应板坯几何形状的传统局部估计实施方法进行了综合比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Integral-Equation-Based Variance Reduction Method for Accelerated Monte Carlo Simulations
In this work, we introduce a novel variance reduction approach utilising the integral formulation of the radiative transfer equation to calculate the radiance in a planar symmetric slab geometry. Due to its integral nature, our method offers a fundamental advantage over well-established variance reduction methods such as the local estimate technique. As opposed to the local estimate procedure, photons add to the overall radiance not only at specific points of interaction but also throughout each consecutive path element; hence, our variance reduction approach can be thought of as an integral local estimate method. This facilitates a substantial enhancement in statistical efficiency, especially in scenarios where only a small number of scattering events or a high attenuation along the detection paths is to be anticipated. To evaluate the overall performance of the integral approach, we incorporated it into a self-developed GPU-accelerated Monte Carlo software, together with a conventional local estimate implementation adapted to slab geometry for a comprehensive comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization Investigation of Multiple High Quality-Factor Fano Resonances in Asymmetric Nanopillar Arrays for Optical Sensing An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface Multi-Array Visible-Light Optical Generalized Spatial Multiplexing–Multiple Input Multiple-Output System with Pearson Coefficient-Based Antenna Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1