{"title":"绿咖啡豆提取物辅助简易合成还原石墨烯氧化物及其染料去除活性","authors":"A.B.M. Nazmul Islam, Prianka Saha, Md. Emran Hossain, Md. Ahsan Habib, Kaykobad Md. Rezaul Karim, Md. Mahiuddin","doi":"10.1002/gch2.202300247","DOIUrl":null,"url":null,"abstract":"<p>To discharge the colored effluents from industries there needs to be effective and affordable treatment options. Adsorption using reduced graphene oxide (rGO) as an adsorbent is a prominent one. In this study, green coffee bean extract (GCBE) is utilized as a safe reducing agent for the reduction of graphene oxide (GO) to synthesize rGO. The formation of rGO is confirmed by a new peak in the UV–vis spectra at 275 nm and a diffraction peak in the XRD patterns at 22°. The effective formation of rGO is further substantiated by a change in the GO peak's properties in the FTIR, EDX, and Raman spectra and a weight loss change in TGA. The SEM and TEM analyses demonstrate the effective production of the nano-sheets of rGO having exfoliated and segregated in a few layers. Furthermore, the obtained rGO exhibited outstanding efficacy in wastewater cleanup, effectively adsorbing MB as a prototype organic dye. The kinetics and isotherm study suggested that the adsorption leads by the chemisorption and monolayer formation on the homogeneous surface of rGO. The maximum adsorption capacity is found to be 89.3 mg g<sup>−1</sup>. This process offers a fresh opportunity for the economical and safe production of rGO for wastewater treatment.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300247","citationCount":"0","resultStr":"{\"title\":\"Green Coffee Bean Extract Assisted Facile Synthesis of Reduced Graphene Oxide and Its Dye Removal Activity\",\"authors\":\"A.B.M. Nazmul Islam, Prianka Saha, Md. Emran Hossain, Md. Ahsan Habib, Kaykobad Md. Rezaul Karim, Md. Mahiuddin\",\"doi\":\"10.1002/gch2.202300247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To discharge the colored effluents from industries there needs to be effective and affordable treatment options. Adsorption using reduced graphene oxide (rGO) as an adsorbent is a prominent one. In this study, green coffee bean extract (GCBE) is utilized as a safe reducing agent for the reduction of graphene oxide (GO) to synthesize rGO. The formation of rGO is confirmed by a new peak in the UV–vis spectra at 275 nm and a diffraction peak in the XRD patterns at 22°. The effective formation of rGO is further substantiated by a change in the GO peak's properties in the FTIR, EDX, and Raman spectra and a weight loss change in TGA. The SEM and TEM analyses demonstrate the effective production of the nano-sheets of rGO having exfoliated and segregated in a few layers. Furthermore, the obtained rGO exhibited outstanding efficacy in wastewater cleanup, effectively adsorbing MB as a prototype organic dye. The kinetics and isotherm study suggested that the adsorption leads by the chemisorption and monolayer formation on the homogeneous surface of rGO. The maximum adsorption capacity is found to be 89.3 mg g<sup>−1</sup>. This process offers a fresh opportunity for the economical and safe production of rGO for wastewater treatment.</p>\",\"PeriodicalId\":12646,\"journal\":{\"name\":\"Global Challenges\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300247\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Challenges\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300247\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300247","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Green Coffee Bean Extract Assisted Facile Synthesis of Reduced Graphene Oxide and Its Dye Removal Activity
To discharge the colored effluents from industries there needs to be effective and affordable treatment options. Adsorption using reduced graphene oxide (rGO) as an adsorbent is a prominent one. In this study, green coffee bean extract (GCBE) is utilized as a safe reducing agent for the reduction of graphene oxide (GO) to synthesize rGO. The formation of rGO is confirmed by a new peak in the UV–vis spectra at 275 nm and a diffraction peak in the XRD patterns at 22°. The effective formation of rGO is further substantiated by a change in the GO peak's properties in the FTIR, EDX, and Raman spectra and a weight loss change in TGA. The SEM and TEM analyses demonstrate the effective production of the nano-sheets of rGO having exfoliated and segregated in a few layers. Furthermore, the obtained rGO exhibited outstanding efficacy in wastewater cleanup, effectively adsorbing MB as a prototype organic dye. The kinetics and isotherm study suggested that the adsorption leads by the chemisorption and monolayer formation on the homogeneous surface of rGO. The maximum adsorption capacity is found to be 89.3 mg g−1. This process offers a fresh opportunity for the economical and safe production of rGO for wastewater treatment.