Lei Zou, Jing-Hui Guo, Li-Fei Zhang, Guangyu Huang, Shu‐Juan Jiao, Zhong-Hua Tian, Ping-Hua Liu
{"title":"华北克拉通阿拉善地块高压和超高温花岗岩的变质演化:对古新生代造山带碰撞和剥蚀的影响","authors":"Lei Zou, Jing-Hui Guo, Li-Fei Zhang, Guangyu Huang, Shu‐Juan Jiao, Zhong-Hua Tian, Ping-Hua Liu","doi":"10.1130/b37120.1","DOIUrl":null,"url":null,"abstract":"High-pressure (HP) and ultrahigh-temperature (UHT) granulites with a high geothermal gradient (greater than 500 °C/GPa) are prominent features of Paleoproterozoic orogenic belts and may represent paired metamorphic belts present during the early stages of plate tectonics. Understanding their pressure−temperature−time (P-T-t) paths and metamorphic evolutionary relationships could provide valuable constraints on the tectonic processes of Paleoproterozoic orogenic belts. Here, we describe garnet mafic and clinopyroxene-orthopyroxene (Cpx-Opx) granulites from the Diebusige area of the Alxa Block in the western part of the Khondalite Belt, North China Craton. Through detailed petrographic, phase equilibrium modeling, and Ti-in-amphibole thermometric studies, we obtained the preserved peak mineral assemblages of two types of mafic granulites: garnet + clinopyroxene + amphibole + plagioclase + quartz + ilmenite, and clinopyroxene + orthopyroxene + plagioclase + amphibole + garnet (rare) + ilmenite. The preserved peak P-T conditions were determined to be 850−890 °C/11.4−13.2 kbar (HP granulite-facies) and 950−970 °C/8.2−9.2 kbar (UHT conditions), with thermal gradients of ∼70 °C/kbar (moderate differential temperature/differential pressure, dT/dP) and ∼110 °C/kbar (high dT/dP), respectively. Using sensitive high-resolution ion microprobe U-Pb dating and rare earth element analysis of zircons, we found that the garnet mafic granulite recorded an HP granulite-facies metamorphic age of ca. 1.95 Ga and a retrograde cooling age of ca. 1.8 Ga, while the Cpx-Opx granulite recorded a consistent retrograde cooling age of ca. 1.8 Ga. By combining these results with the metamorphic evolution and timing (ca. 1.92−1.91 Ga) of UHT rocks from the Khondalite Belt, we suggest that the garnet (HP) mafic and Cpx-Opx (UHT) granulites may represent different stages of the same metamorphic event, shedding light on the processes involved in the collision and subsequent exhumation of Paleoproterozoic orogenic belts.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":"8 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metamorphic evolution of high-pressure and ultrahigh-temperature granulites from the Alxa Block, North China Craton: Implications for the collision and exhumation of Paleoproterozoic orogenic belts\",\"authors\":\"Lei Zou, Jing-Hui Guo, Li-Fei Zhang, Guangyu Huang, Shu‐Juan Jiao, Zhong-Hua Tian, Ping-Hua Liu\",\"doi\":\"10.1130/b37120.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-pressure (HP) and ultrahigh-temperature (UHT) granulites with a high geothermal gradient (greater than 500 °C/GPa) are prominent features of Paleoproterozoic orogenic belts and may represent paired metamorphic belts present during the early stages of plate tectonics. Understanding their pressure−temperature−time (P-T-t) paths and metamorphic evolutionary relationships could provide valuable constraints on the tectonic processes of Paleoproterozoic orogenic belts. Here, we describe garnet mafic and clinopyroxene-orthopyroxene (Cpx-Opx) granulites from the Diebusige area of the Alxa Block in the western part of the Khondalite Belt, North China Craton. Through detailed petrographic, phase equilibrium modeling, and Ti-in-amphibole thermometric studies, we obtained the preserved peak mineral assemblages of two types of mafic granulites: garnet + clinopyroxene + amphibole + plagioclase + quartz + ilmenite, and clinopyroxene + orthopyroxene + plagioclase + amphibole + garnet (rare) + ilmenite. The preserved peak P-T conditions were determined to be 850−890 °C/11.4−13.2 kbar (HP granulite-facies) and 950−970 °C/8.2−9.2 kbar (UHT conditions), with thermal gradients of ∼70 °C/kbar (moderate differential temperature/differential pressure, dT/dP) and ∼110 °C/kbar (high dT/dP), respectively. Using sensitive high-resolution ion microprobe U-Pb dating and rare earth element analysis of zircons, we found that the garnet mafic granulite recorded an HP granulite-facies metamorphic age of ca. 1.95 Ga and a retrograde cooling age of ca. 1.8 Ga, while the Cpx-Opx granulite recorded a consistent retrograde cooling age of ca. 1.8 Ga. By combining these results with the metamorphic evolution and timing (ca. 1.92−1.91 Ga) of UHT rocks from the Khondalite Belt, we suggest that the garnet (HP) mafic and Cpx-Opx (UHT) granulites may represent different stages of the same metamorphic event, shedding light on the processes involved in the collision and subsequent exhumation of Paleoproterozoic orogenic belts.\",\"PeriodicalId\":55104,\"journal\":{\"name\":\"Geological Society of America Bulletin\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society of America Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/b37120.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/b37120.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Metamorphic evolution of high-pressure and ultrahigh-temperature granulites from the Alxa Block, North China Craton: Implications for the collision and exhumation of Paleoproterozoic orogenic belts
High-pressure (HP) and ultrahigh-temperature (UHT) granulites with a high geothermal gradient (greater than 500 °C/GPa) are prominent features of Paleoproterozoic orogenic belts and may represent paired metamorphic belts present during the early stages of plate tectonics. Understanding their pressure−temperature−time (P-T-t) paths and metamorphic evolutionary relationships could provide valuable constraints on the tectonic processes of Paleoproterozoic orogenic belts. Here, we describe garnet mafic and clinopyroxene-orthopyroxene (Cpx-Opx) granulites from the Diebusige area of the Alxa Block in the western part of the Khondalite Belt, North China Craton. Through detailed petrographic, phase equilibrium modeling, and Ti-in-amphibole thermometric studies, we obtained the preserved peak mineral assemblages of two types of mafic granulites: garnet + clinopyroxene + amphibole + plagioclase + quartz + ilmenite, and clinopyroxene + orthopyroxene + plagioclase + amphibole + garnet (rare) + ilmenite. The preserved peak P-T conditions were determined to be 850−890 °C/11.4−13.2 kbar (HP granulite-facies) and 950−970 °C/8.2−9.2 kbar (UHT conditions), with thermal gradients of ∼70 °C/kbar (moderate differential temperature/differential pressure, dT/dP) and ∼110 °C/kbar (high dT/dP), respectively. Using sensitive high-resolution ion microprobe U-Pb dating and rare earth element analysis of zircons, we found that the garnet mafic granulite recorded an HP granulite-facies metamorphic age of ca. 1.95 Ga and a retrograde cooling age of ca. 1.8 Ga, while the Cpx-Opx granulite recorded a consistent retrograde cooling age of ca. 1.8 Ga. By combining these results with the metamorphic evolution and timing (ca. 1.92−1.91 Ga) of UHT rocks from the Khondalite Belt, we suggest that the garnet (HP) mafic and Cpx-Opx (UHT) granulites may represent different stages of the same metamorphic event, shedding light on the processes involved in the collision and subsequent exhumation of Paleoproterozoic orogenic belts.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.