{"title":"考虑到流体饱和度的新型 VS30 预测策略和新的图尔基耶 VS30 模型","authors":"Hakan Bora Okay, A. A. Özacar","doi":"10.1785/0120230032","DOIUrl":null,"url":null,"abstract":"\n The averaged shear-wave velocity of the top 30 m (VS30) is widely used in earthquake engineering as a proxy to represent site responses. However, the spatial availability of measured VS30 is rather limited, and, so far, a region-specific VS30 model that would aid prediction of strong ground motions is not yet developed for Türkiye. In this study, a new strategy for predicting VS30 is developed using data from Türkiye and California. At first, VS30 measurements are classified into four sedimentary classes according to their ages (Quaternary–Pliocene, Miocene, Paleogene, and Pre-Paleogene) and three nonsedimentary classes (Intrusive, Extrusive, and Metamorphic). Observations from Quaternary–Pliocene deposits are most abundant and characterized by large data scatter, thus further divided into two major landform groups. Because the reduction of VS with saturation is pronounced in soils due to capillary forces, Quaternary–Pliocene deposits are also differentiated as wet if the water table depth is less than 30 m and dry otherwise. In California, available groundwater measurements are utilized while flat areas with elevation differences less than 30 m from water bodies (sea, lake, and major rivers) are mapped out as wet zones throughout Türkiye. After the elimination of outliers, slope and elevation-based VS30 prediction equations are developed separately for subclasses of Quaternary–Pliocene, Miocene, and Paleogene-aged sedimentary units using multivariable linear regression, whereas VS30 values of Pre-Paleogene sedimentary and nonsedimentary units are fixed to the mean of each subclass. Resultant model misfits and comparisons with measurements from the microzonation study conducted across İstanbul clearly indicate that our proposed VS30 prediction strategy is performing better than the competing models tested, especially in the youngest sedimentary units, and thus provides a new, accurate VS30 model of Türkiye.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"60 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel VS30 Prediction Strategy Taking Fluid Saturation into Account and a New VS30 Model of Türkiye\",\"authors\":\"Hakan Bora Okay, A. A. Özacar\",\"doi\":\"10.1785/0120230032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The averaged shear-wave velocity of the top 30 m (VS30) is widely used in earthquake engineering as a proxy to represent site responses. However, the spatial availability of measured VS30 is rather limited, and, so far, a region-specific VS30 model that would aid prediction of strong ground motions is not yet developed for Türkiye. In this study, a new strategy for predicting VS30 is developed using data from Türkiye and California. At first, VS30 measurements are classified into four sedimentary classes according to their ages (Quaternary–Pliocene, Miocene, Paleogene, and Pre-Paleogene) and three nonsedimentary classes (Intrusive, Extrusive, and Metamorphic). Observations from Quaternary–Pliocene deposits are most abundant and characterized by large data scatter, thus further divided into two major landform groups. Because the reduction of VS with saturation is pronounced in soils due to capillary forces, Quaternary–Pliocene deposits are also differentiated as wet if the water table depth is less than 30 m and dry otherwise. In California, available groundwater measurements are utilized while flat areas with elevation differences less than 30 m from water bodies (sea, lake, and major rivers) are mapped out as wet zones throughout Türkiye. After the elimination of outliers, slope and elevation-based VS30 prediction equations are developed separately for subclasses of Quaternary–Pliocene, Miocene, and Paleogene-aged sedimentary units using multivariable linear regression, whereas VS30 values of Pre-Paleogene sedimentary and nonsedimentary units are fixed to the mean of each subclass. Resultant model misfits and comparisons with measurements from the microzonation study conducted across İstanbul clearly indicate that our proposed VS30 prediction strategy is performing better than the competing models tested, especially in the youngest sedimentary units, and thus provides a new, accurate VS30 model of Türkiye.\",\"PeriodicalId\":9444,\"journal\":{\"name\":\"Bulletin of the Seismological Society of America\",\"volume\":\"60 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Seismological Society of America\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0120230032\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230032","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Novel VS30 Prediction Strategy Taking Fluid Saturation into Account and a New VS30 Model of Türkiye
The averaged shear-wave velocity of the top 30 m (VS30) is widely used in earthquake engineering as a proxy to represent site responses. However, the spatial availability of measured VS30 is rather limited, and, so far, a region-specific VS30 model that would aid prediction of strong ground motions is not yet developed for Türkiye. In this study, a new strategy for predicting VS30 is developed using data from Türkiye and California. At first, VS30 measurements are classified into four sedimentary classes according to their ages (Quaternary–Pliocene, Miocene, Paleogene, and Pre-Paleogene) and three nonsedimentary classes (Intrusive, Extrusive, and Metamorphic). Observations from Quaternary–Pliocene deposits are most abundant and characterized by large data scatter, thus further divided into two major landform groups. Because the reduction of VS with saturation is pronounced in soils due to capillary forces, Quaternary–Pliocene deposits are also differentiated as wet if the water table depth is less than 30 m and dry otherwise. In California, available groundwater measurements are utilized while flat areas with elevation differences less than 30 m from water bodies (sea, lake, and major rivers) are mapped out as wet zones throughout Türkiye. After the elimination of outliers, slope and elevation-based VS30 prediction equations are developed separately for subclasses of Quaternary–Pliocene, Miocene, and Paleogene-aged sedimentary units using multivariable linear regression, whereas VS30 values of Pre-Paleogene sedimentary and nonsedimentary units are fixed to the mean of each subclass. Resultant model misfits and comparisons with measurements from the microzonation study conducted across İstanbul clearly indicate that our proposed VS30 prediction strategy is performing better than the competing models tested, especially in the youngest sedimentary units, and thus provides a new, accurate VS30 model of Türkiye.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.