估算乘用车的路面湿度

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-12-20 DOI:10.3390/lubricants12010002
Wiyao Edjeou, Ebrahim Riahi, Manuela Gennesseaux, V. Cerezo, Minh-Tan Do
{"title":"估算乘用车的路面湿度","authors":"Wiyao Edjeou, Ebrahim Riahi, Manuela Gennesseaux, V. Cerezo, Minh-Tan Do","doi":"10.3390/lubricants12010002","DOIUrl":null,"url":null,"abstract":"This paper presents an evaluation of a system aiming at estimating water depths on a road surface. Using accelerometers, the system records the vibrations of a wheel arch liner due to impacts of water droplets. The system setup, including the location of the accelerometers on a wheel arch and the data acquisition, is described. Tests were performed with a passenger car on various road surfaces and at different vehicle speeds and water depths. Signals recorded by the accelerometers are filtered and processed. The link between the acceleration amplitude, the water depth, and the vehicle speed is consistent with results from previous studies. The effect of the surface texture is less obvious and needs further investigations. A mathematical model has been developed to relate the acceleration amplitude to the water depth. The potential application of the developed system to on-board evaluation of pavement wetness, and consequently the pavement skid resistance, is discussed. Perspectives for driver assistance, or more generally, for autonomous driving to improve traffic safety, are also highlighted.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"98 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Road Wetness from a Passenger Car\",\"authors\":\"Wiyao Edjeou, Ebrahim Riahi, Manuela Gennesseaux, V. Cerezo, Minh-Tan Do\",\"doi\":\"10.3390/lubricants12010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an evaluation of a system aiming at estimating water depths on a road surface. Using accelerometers, the system records the vibrations of a wheel arch liner due to impacts of water droplets. The system setup, including the location of the accelerometers on a wheel arch and the data acquisition, is described. Tests were performed with a passenger car on various road surfaces and at different vehicle speeds and water depths. Signals recorded by the accelerometers are filtered and processed. The link between the acceleration amplitude, the water depth, and the vehicle speed is consistent with results from previous studies. The effect of the surface texture is less obvious and needs further investigations. A mathematical model has been developed to relate the acceleration amplitude to the water depth. The potential application of the developed system to on-board evaluation of pavement wetness, and consequently the pavement skid resistance, is discussed. Perspectives for driver assistance, or more generally, for autonomous driving to improve traffic safety, are also highlighted.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"98 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12010002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12010002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了对旨在估算路面水深的系统的评估。该系统使用加速度计记录水滴撞击轮拱衬垫时产生的振动。系统设置包括加速度计在轮拱上的位置和数据采集。在不同的路面、不同的车速和水深条件下,对一辆乘用车进行了测试。加速度计记录的信号经过过滤和处理。加速度振幅、水深和车速之间的联系与之前的研究结果一致。表面纹理的影响不太明显,需要进一步研究。我们建立了一个数学模型,将加速度振幅与水深联系起来。讨论了所开发系统在车载路面湿度评估中的潜在应用,以及由此产生的路面防滑性能。此外,还强调了驾驶员辅助系统,或更广泛意义上的自动驾驶系统在改善交通安全方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Road Wetness from a Passenger Car
This paper presents an evaluation of a system aiming at estimating water depths on a road surface. Using accelerometers, the system records the vibrations of a wheel arch liner due to impacts of water droplets. The system setup, including the location of the accelerometers on a wheel arch and the data acquisition, is described. Tests were performed with a passenger car on various road surfaces and at different vehicle speeds and water depths. Signals recorded by the accelerometers are filtered and processed. The link between the acceleration amplitude, the water depth, and the vehicle speed is consistent with results from previous studies. The effect of the surface texture is less obvious and needs further investigations. A mathematical model has been developed to relate the acceleration amplitude to the water depth. The potential application of the developed system to on-board evaluation of pavement wetness, and consequently the pavement skid resistance, is discussed. Perspectives for driver assistance, or more generally, for autonomous driving to improve traffic safety, are also highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1