Lelia Deville, Marios Theristis, Bruce H. King, Terrence L. Chambers, Joshua S. Stein
{"title":"根据特征明确的系统数据对开源光伏模型管道进行验证","authors":"Lelia Deville, Marios Theristis, Bruce H. King, Terrence L. Chambers, Joshua S. Stein","doi":"10.1002/pip.3763","DOIUrl":null,"url":null,"abstract":"<p>All freely available plane-of-array (POA) transposition models and photovoltaic (PV) temperature and performance models in <i>pvlib-python</i> and <i>pvpltools-python</i> were examined against multiyear field data from Albuquerque, New Mexico. The data include different PV systems composed of crystalline silicon modules that vary in cell type, module construction, and materials. These systems have been characterized via IEC 61853-1 and 61853-2 testing, and the input data for each model were sourced from these system-specific test results, rather than considering any generic input data (e.g., manufacturer's specification [spec] sheets or generic <i>Panneau Solaire</i> [PAN] files). Six POA transposition models, 7 temperature models, and 12 performance models are included in this comparative analysis. These freely available models were proven effective across many different types of technologies. The POA transposition models exhibited average normalized mean bias errors (NMBEs) within ±3%. Most PV temperature models underestimated temperature exhibiting mean and median residuals ranging from −6.5°C to 2.7°C; all temperature models saw a reduction in root mean square error when using transient assumptions over steady state. The performance models demonstrated similar behavior with a first and third interquartile NMBEs within ±4.2% and an overall average NMBE within ±2.3%. Although differences among models were observed at different times of the day/year, this study shows that the availability of system-specific input data is more important than model selection. For example, using spec sheet or generic PAN file data with a complex PV performance model does not guarantee a better accuracy than a simpler PV performance model that uses system-specific data.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 5","pages":"291-303"},"PeriodicalIF":8.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3763","citationCount":"0","resultStr":"{\"title\":\"Open-source photovoltaic model pipeline validation against well-characterized system data\",\"authors\":\"Lelia Deville, Marios Theristis, Bruce H. King, Terrence L. Chambers, Joshua S. Stein\",\"doi\":\"10.1002/pip.3763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>All freely available plane-of-array (POA) transposition models and photovoltaic (PV) temperature and performance models in <i>pvlib-python</i> and <i>pvpltools-python</i> were examined against multiyear field data from Albuquerque, New Mexico. The data include different PV systems composed of crystalline silicon modules that vary in cell type, module construction, and materials. These systems have been characterized via IEC 61853-1 and 61853-2 testing, and the input data for each model were sourced from these system-specific test results, rather than considering any generic input data (e.g., manufacturer's specification [spec] sheets or generic <i>Panneau Solaire</i> [PAN] files). Six POA transposition models, 7 temperature models, and 12 performance models are included in this comparative analysis. These freely available models were proven effective across many different types of technologies. The POA transposition models exhibited average normalized mean bias errors (NMBEs) within ±3%. Most PV temperature models underestimated temperature exhibiting mean and median residuals ranging from −6.5°C to 2.7°C; all temperature models saw a reduction in root mean square error when using transient assumptions over steady state. The performance models demonstrated similar behavior with a first and third interquartile NMBEs within ±4.2% and an overall average NMBE within ±2.3%. Although differences among models were observed at different times of the day/year, this study shows that the availability of system-specific input data is more important than model selection. For example, using spec sheet or generic PAN file data with a complex PV performance model does not guarantee a better accuracy than a simpler PV performance model that uses system-specific data.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 5\",\"pages\":\"291-303\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3763\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3763\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3763","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Open-source photovoltaic model pipeline validation against well-characterized system data
All freely available plane-of-array (POA) transposition models and photovoltaic (PV) temperature and performance models in pvlib-python and pvpltools-python were examined against multiyear field data from Albuquerque, New Mexico. The data include different PV systems composed of crystalline silicon modules that vary in cell type, module construction, and materials. These systems have been characterized via IEC 61853-1 and 61853-2 testing, and the input data for each model were sourced from these system-specific test results, rather than considering any generic input data (e.g., manufacturer's specification [spec] sheets or generic Panneau Solaire [PAN] files). Six POA transposition models, 7 temperature models, and 12 performance models are included in this comparative analysis. These freely available models were proven effective across many different types of technologies. The POA transposition models exhibited average normalized mean bias errors (NMBEs) within ±3%. Most PV temperature models underestimated temperature exhibiting mean and median residuals ranging from −6.5°C to 2.7°C; all temperature models saw a reduction in root mean square error when using transient assumptions over steady state. The performance models demonstrated similar behavior with a first and third interquartile NMBEs within ±4.2% and an overall average NMBE within ±2.3%. Although differences among models were observed at different times of the day/year, this study shows that the availability of system-specific input data is more important than model selection. For example, using spec sheet or generic PAN file data with a complex PV performance model does not guarantee a better accuracy than a simpler PV performance model that uses system-specific data.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.