Krishnakumar Rathinavel, Sarankumar Chandran, Abikkumar Chellamuthu, Karthikeyan Adhimoolam, Vellaikumar Sampathrajan, Ravikesavan Rajasekeran, Uma Doraiswamy, John Kennedy Zachariah and Senthil Natesan*,
{"title":"标记辅助遗传增强甜玉米杂交种亲本品系中的维生素 A","authors":"Krishnakumar Rathinavel, Sarankumar Chandran, Abikkumar Chellamuthu, Karthikeyan Adhimoolam, Vellaikumar Sampathrajan, Ravikesavan Rajasekeran, Uma Doraiswamy, John Kennedy Zachariah and Senthil Natesan*, ","doi":"10.1021/acsagscitech.3c00256","DOIUrl":null,"url":null,"abstract":"<p >Sweet corn is cultivated worldwide in tropical and temperate regions, and it is consumed favorably due to its sweet taste, but it is poor in provitamin A carotenoids. For these reasons, by adopting a marker-assisted backcross breeding (MABB) approach, we aimed to enhance the β-carotene concentration in sweet corn inbreds (USC1-2-3-1, SC1107, and 12039-1), which are the parents of popular sweet corn hybrids. β-carotene-rich inbred lines UMI1230β<sup>+</sup> crossed with these inbreds and progenies are selected based on the gene-specific markers (foreground selection) and SSR markers (background selection). As a result, four improved lines from each cross, viz., USC1-2-3-1 × UMI1230β<sup>+</sup>, SC1107 × UMI1230β<sup>+</sup>, and 12039-1 × UMI1230β<sup>+</sup> with high β-carotene concentration and good agronomic performance (>80%) were obtained. These lines were used to produce hybrids with improved vitamin A content. Furthermore, the improved lines were used to develop the hybrids and tested along with the original hybrids. The hybrids produced by crossing improved lines were on par with the original hybrids regarding grain yield and sweetness with an added advantage of β-carotene. These improved β-carotene-rich sweet corn inbreds and hybrids have enormous potential to reduce malnutrition in a sustainable and economical way.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"4 1","pages":"34–42"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marker-Assisted Genetic Enhancement of Provitamin A in Parental Lines of Sweet Corn Hybrids\",\"authors\":\"Krishnakumar Rathinavel, Sarankumar Chandran, Abikkumar Chellamuthu, Karthikeyan Adhimoolam, Vellaikumar Sampathrajan, Ravikesavan Rajasekeran, Uma Doraiswamy, John Kennedy Zachariah and Senthil Natesan*, \",\"doi\":\"10.1021/acsagscitech.3c00256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sweet corn is cultivated worldwide in tropical and temperate regions, and it is consumed favorably due to its sweet taste, but it is poor in provitamin A carotenoids. For these reasons, by adopting a marker-assisted backcross breeding (MABB) approach, we aimed to enhance the β-carotene concentration in sweet corn inbreds (USC1-2-3-1, SC1107, and 12039-1), which are the parents of popular sweet corn hybrids. β-carotene-rich inbred lines UMI1230β<sup>+</sup> crossed with these inbreds and progenies are selected based on the gene-specific markers (foreground selection) and SSR markers (background selection). As a result, four improved lines from each cross, viz., USC1-2-3-1 × UMI1230β<sup>+</sup>, SC1107 × UMI1230β<sup>+</sup>, and 12039-1 × UMI1230β<sup>+</sup> with high β-carotene concentration and good agronomic performance (>80%) were obtained. These lines were used to produce hybrids with improved vitamin A content. Furthermore, the improved lines were used to develop the hybrids and tested along with the original hybrids. The hybrids produced by crossing improved lines were on par with the original hybrids regarding grain yield and sweetness with an added advantage of β-carotene. These improved β-carotene-rich sweet corn inbreds and hybrids have enormous potential to reduce malnutrition in a sustainable and economical way.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"4 1\",\"pages\":\"34–42\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.3c00256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.3c00256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
甜玉米在世界各地的热带和温带地区都有种植,因其味道甜美而深受人们喜爱,但它的维生素 A 类胡萝卜素含量却很低。因此,我们采用标记辅助回交育种(MABB)方法,旨在提高甜玉米杂交种亲本(USC1-2-3-1、SC1107 和 12039-1)的β-胡萝卜素含量。富含β-胡萝卜素的近交系 UMI1230β+ 与这些近交系杂交,根据基因特异性标记(前景选择)和 SSR 标记(背景选择)选择后代。结果,从每个杂交种中获得了四个改良品系,即 USC1-2-3-1 × UMI1230β+、SC1107 × UMI1230β+和 12039-1 × UMI1230β+,它们具有较高的β-胡萝卜素浓度和良好的农艺性状(80%)。这些品系被用来培育维生素 A 含量更高的杂交种。此外,改良品系还被用来培育杂交种,并与原始杂交种一起进行测试。改良品系杂交出的杂交种在谷物产量和甜度方面与原始杂交种不相上下,但在β-胡萝卜素方面更具优势。这些富含 β 胡萝卜素的改良甜玉米近交系和杂交种在以可持续和经济的方式减少营养不良方面具有巨大的潜力。
Marker-Assisted Genetic Enhancement of Provitamin A in Parental Lines of Sweet Corn Hybrids
Sweet corn is cultivated worldwide in tropical and temperate regions, and it is consumed favorably due to its sweet taste, but it is poor in provitamin A carotenoids. For these reasons, by adopting a marker-assisted backcross breeding (MABB) approach, we aimed to enhance the β-carotene concentration in sweet corn inbreds (USC1-2-3-1, SC1107, and 12039-1), which are the parents of popular sweet corn hybrids. β-carotene-rich inbred lines UMI1230β+ crossed with these inbreds and progenies are selected based on the gene-specific markers (foreground selection) and SSR markers (background selection). As a result, four improved lines from each cross, viz., USC1-2-3-1 × UMI1230β+, SC1107 × UMI1230β+, and 12039-1 × UMI1230β+ with high β-carotene concentration and good agronomic performance (>80%) were obtained. These lines were used to produce hybrids with improved vitamin A content. Furthermore, the improved lines were used to develop the hybrids and tested along with the original hybrids. The hybrids produced by crossing improved lines were on par with the original hybrids regarding grain yield and sweetness with an added advantage of β-carotene. These improved β-carotene-rich sweet corn inbreds and hybrids have enormous potential to reduce malnutrition in a sustainable and economical way.