多空间网络钓鱼:利用机器学习扩展针对钓鱼网站检测器的对抗性攻击的规避空间

Ying Yuan, Giovanni Apruzzese, Mauro Conti
{"title":"多空间网络钓鱼:利用机器学习扩展针对钓鱼网站检测器的对抗性攻击的规避空间","authors":"Ying Yuan, Giovanni Apruzzese, Mauro Conti","doi":"10.1145/3638253","DOIUrl":null,"url":null,"abstract":"Existing literature on adversarial Machine Learning (ML) focuses either on showing attacks that break every ML model, or defenses that withstand most attacks. Unfortunately, little consideration is given to the actual feasibility of the attack or the defense. Moreover, adversarial samples are often crafted in the “feature-space”, making the corresponding evaluations of questionable value. Simply put, the current situation does not allow to estimate the actual threat posed by adversarial attacks, leading to a lack of secure ML systems. We aim to clarify such confusion in this paper. By considering the application of ML for Phishing Website Detection (PWD), we formalize the “evasion-space” in which an adversarial perturbation can be introduced to fool an ML-PWD—demonstrating that even perturbations in the “feature-space” are useful. Then, we propose a realistic threat model describing evasion attacks against ML-PWD that are cheap to stage, and hence intrinsically more attractive for real phishers. After that, we perform the first statistically validated assessment of state-of-the-art ML-PWD against 12 evasion attacks. Our evaluation shows (i) the true efficacy of evasion attempts that are more likely to occur; and (ii) the impact of perturbations crafted in different evasion-spaces; Our realistic evasion attempts induce a statistically significant degradation (3–10% at p < 0.05), and their cheap cost makes them a subtle threat. Notably, however, some ML-PWD are immune to our most realistic attacks (p=0.22). Finally, as an additional contribution of this journal publication, we are the first to propose and empirically evaluate the intriguing case wherein an attacker introduces perturbations in multiple evasion-spaces at the same time. These new results show that simultaneously applying perturbations in the problem- and feature-space can cause a drop in the detection rate from 0.95 to 0. Our contribution paves the way for a much-needed re-assessment of adversarial attacks against ML systems for cybersecurity.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"25 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-SpacePhish: Extending the Evasion-space of Adversarial Attacks against Phishing Website Detectors using Machine Learning\",\"authors\":\"Ying Yuan, Giovanni Apruzzese, Mauro Conti\",\"doi\":\"10.1145/3638253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing literature on adversarial Machine Learning (ML) focuses either on showing attacks that break every ML model, or defenses that withstand most attacks. Unfortunately, little consideration is given to the actual feasibility of the attack or the defense. Moreover, adversarial samples are often crafted in the “feature-space”, making the corresponding evaluations of questionable value. Simply put, the current situation does not allow to estimate the actual threat posed by adversarial attacks, leading to a lack of secure ML systems. We aim to clarify such confusion in this paper. By considering the application of ML for Phishing Website Detection (PWD), we formalize the “evasion-space” in which an adversarial perturbation can be introduced to fool an ML-PWD—demonstrating that even perturbations in the “feature-space” are useful. Then, we propose a realistic threat model describing evasion attacks against ML-PWD that are cheap to stage, and hence intrinsically more attractive for real phishers. After that, we perform the first statistically validated assessment of state-of-the-art ML-PWD against 12 evasion attacks. Our evaluation shows (i) the true efficacy of evasion attempts that are more likely to occur; and (ii) the impact of perturbations crafted in different evasion-spaces; Our realistic evasion attempts induce a statistically significant degradation (3–10% at p < 0.05), and their cheap cost makes them a subtle threat. Notably, however, some ML-PWD are immune to our most realistic attacks (p=0.22). Finally, as an additional contribution of this journal publication, we are the first to propose and empirically evaluate the intriguing case wherein an attacker introduces perturbations in multiple evasion-spaces at the same time. These new results show that simultaneously applying perturbations in the problem- and feature-space can cause a drop in the detection rate from 0.95 to 0. Our contribution paves the way for a much-needed re-assessment of adversarial attacks against ML systems for cybersecurity.\",\"PeriodicalId\":202552,\"journal\":{\"name\":\"Digital Threats: Research and Practice\",\"volume\":\"25 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Threats: Research and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3638253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3638253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于对抗式机器学习(ML)的现有文献要么侧重于展示攻破每个 ML 模型的攻击,要么侧重于展示抵御大多数攻击的防御。遗憾的是,这些文献很少考虑攻击或防御的实际可行性。此外,对抗样本往往是在 "特征空间 "中精心制作的,因此相应的评估价值值得怀疑。简而言之,目前的情况无法估计对抗性攻击带来的实际威胁,导致缺乏安全的 ML 系统。我们希望在本文中澄清这种困惑。通过考虑网络钓鱼网站检测(PWD)的应用,我们正式提出了 "规避空间",在这个空间中,可以引入对抗性扰动来欺骗网络钓鱼网站检测(ML-PWD)--证明即使是 "特征空间 "中的扰动也是有用的。然后,我们提出了一个现实的威胁模型,描述了针对 ML-PWD 的规避攻击,这种攻击的实施成本很低,因此对真正的网络钓鱼者来说更有吸引力。之后,我们针对 12 种规避攻击对最先进的 ML-PWD 进行了首次统计验证评估。我们的评估结果表明:(i) 更有可能发生的规避尝试的真实功效;(ii) 在不同规避空间中精心设计的扰动的影响;我们的真实规避尝试会导致统计意义上的显著降低(P < 0.05 时为 3-10%),其低廉的成本使其成为一种微妙的威胁。不过,值得注意的是,一些 ML-PWD 对我们最逼真的攻击具有免疫力(p=0.22)。最后,作为本期刊发表的另一项贡献,我们首次提出并根据经验评估了攻击者同时在多个规避空间引入扰动的有趣情况。这些新结果表明,同时在问题空间和特征空间应用扰动会导致检测率从 0.95 降至 0。我们的贡献为重新评估针对网络安全的 ML 系统的对抗性攻击铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-SpacePhish: Extending the Evasion-space of Adversarial Attacks against Phishing Website Detectors using Machine Learning
Existing literature on adversarial Machine Learning (ML) focuses either on showing attacks that break every ML model, or defenses that withstand most attacks. Unfortunately, little consideration is given to the actual feasibility of the attack or the defense. Moreover, adversarial samples are often crafted in the “feature-space”, making the corresponding evaluations of questionable value. Simply put, the current situation does not allow to estimate the actual threat posed by adversarial attacks, leading to a lack of secure ML systems. We aim to clarify such confusion in this paper. By considering the application of ML for Phishing Website Detection (PWD), we formalize the “evasion-space” in which an adversarial perturbation can be introduced to fool an ML-PWD—demonstrating that even perturbations in the “feature-space” are useful. Then, we propose a realistic threat model describing evasion attacks against ML-PWD that are cheap to stage, and hence intrinsically more attractive for real phishers. After that, we perform the first statistically validated assessment of state-of-the-art ML-PWD against 12 evasion attacks. Our evaluation shows (i) the true efficacy of evasion attempts that are more likely to occur; and (ii) the impact of perturbations crafted in different evasion-spaces; Our realistic evasion attempts induce a statistically significant degradation (3–10% at p < 0.05), and their cheap cost makes them a subtle threat. Notably, however, some ML-PWD are immune to our most realistic attacks (p=0.22). Finally, as an additional contribution of this journal publication, we are the first to propose and empirically evaluate the intriguing case wherein an attacker introduces perturbations in multiple evasion-spaces at the same time. These new results show that simultaneously applying perturbations in the problem- and feature-space can cause a drop in the detection rate from 0.95 to 0. Our contribution paves the way for a much-needed re-assessment of adversarial attacks against ML systems for cybersecurity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal Inconsistencies are Normal in Windows Memory Dumps (too) InvesTEE: A TEE-supported Framework for Lawful Remote Forensic Investigations Does Cyber Insurance promote Cyber Security Best Practice? An Analysis based on Insurance Application Forms Unveiling Cyber Threat Actors: A Hybrid Deep Learning Approach for Behavior-based Attribution A Framework for Enhancing Social Media Misinformation Detection with Topical-Tactics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1