支持不孕不育医生处理体外受精患者投诉服务的混合智能系统模型

Mendel Pub Date : 2023-12-20 DOI:10.13164/mendel.2023.2.084
I. Sembiring, Paminto Agung Christianto, Eko Sediyono
{"title":"支持不孕不育医生处理体外受精患者投诉服务的混合智能系统模型","authors":"I. Sembiring, Paminto Agung Christianto, Eko Sediyono","doi":"10.13164/mendel.2023.2.084","DOIUrl":null,"url":null,"abstract":"The majority of In-Vitro Fertilization (IVF) patients immediately call a fertility doctor when they experience different symptoms than usual. However, the high workload makes fertility doctors unable to immediately provide recommendations to handle complaints of IVF patients, while the longer wait for recommendations from fertility doctors will increase the anxiety of IVF patients and high levels of anxiety affect the success rate of IVF programs. The Case-Based Reasoning (CBR) model has lower performance than the modified CBR model, and the CBR model adds to the workload of fertility doctors, namely having to handle the revision stage. To overcome these problems, the CBR model was modified by applying the Chris Case-Based Reasoning (CCBR) similarity formula and combining it with the Rule-Based Reasoning model. The results of performance measurements showed that the accuracy score increased to 47\\% and the precision score remained 100\\%, so the results of this modification of the CBR model are worthy of being recommended for application to a smart system for handling complaints of IVF patients.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"17 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid of Smart System Model to Support the Service of Fertility Doctors in Handling In-Vitro Fertilization Patient Complaints\",\"authors\":\"I. Sembiring, Paminto Agung Christianto, Eko Sediyono\",\"doi\":\"10.13164/mendel.2023.2.084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of In-Vitro Fertilization (IVF) patients immediately call a fertility doctor when they experience different symptoms than usual. However, the high workload makes fertility doctors unable to immediately provide recommendations to handle complaints of IVF patients, while the longer wait for recommendations from fertility doctors will increase the anxiety of IVF patients and high levels of anxiety affect the success rate of IVF programs. The Case-Based Reasoning (CBR) model has lower performance than the modified CBR model, and the CBR model adds to the workload of fertility doctors, namely having to handle the revision stage. To overcome these problems, the CBR model was modified by applying the Chris Case-Based Reasoning (CCBR) similarity formula and combining it with the Rule-Based Reasoning model. The results of performance measurements showed that the accuracy score increased to 47\\\\% and the precision score remained 100\\\\%, so the results of this modification of the CBR model are worthy of being recommended for application to a smart system for handling complaints of IVF patients.\",\"PeriodicalId\":38293,\"journal\":{\"name\":\"Mendel\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/mendel.2023.2.084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2023.2.084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数体外受精(IVF)患者在出现与平时不同的症状时,会立即致电生殖医生。然而,高负荷的工作量使得生殖医生无法立即提供处理试管婴儿患者投诉的建议,而等待生殖医生建议的时间较长,会增加试管婴儿患者的焦虑,高焦虑水平会影响试管婴儿项目的成功率。基于病例的推理(CBR)模型的性能低于修改后的 CBR 模型,而且 CBR 模型增加了生殖医生的工作量,即必须处理修改阶段。为了克服这些问题,通过应用克里斯病例推理(CCBR)相似性公式并将其与基于规则的推理模型相结合,对 CBR 模型进行了改进。性能测量结果表明,准确率提高到47%,精确率保持100%,因此CBR模型的这一修改结果值得推荐应用于处理试管婴儿患者投诉的智能系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid of Smart System Model to Support the Service of Fertility Doctors in Handling In-Vitro Fertilization Patient Complaints
The majority of In-Vitro Fertilization (IVF) patients immediately call a fertility doctor when they experience different symptoms than usual. However, the high workload makes fertility doctors unable to immediately provide recommendations to handle complaints of IVF patients, while the longer wait for recommendations from fertility doctors will increase the anxiety of IVF patients and high levels of anxiety affect the success rate of IVF programs. The Case-Based Reasoning (CBR) model has lower performance than the modified CBR model, and the CBR model adds to the workload of fertility doctors, namely having to handle the revision stage. To overcome these problems, the CBR model was modified by applying the Chris Case-Based Reasoning (CCBR) similarity formula and combining it with the Rule-Based Reasoning model. The results of performance measurements showed that the accuracy score increased to 47\% and the precision score remained 100\%, so the results of this modification of the CBR model are worthy of being recommended for application to a smart system for handling complaints of IVF patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Detecting Outliers Using Modified Recursive PCA Algorithm For Dynamic Streaming Data Stock and Structured Warrant Portfolio Optimization Using Black-Litterman Model and Binomial Method Optimized Fixed-Time Synergetic Controller via a modified Salp Swarm Algorithm for Acute and Chronic HBV Transmission System Initial Coin Offering Prediction Comparison Using Ridge Regression, Artificial Neural Network, Random Forest Regression, and Hybrid ANN-Ridge Predicting Football Match Outcomes with Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1