Farzane Memarian, Reza Mohammadi, R. Akrami, M. Bodaghi, Mohammad Fotouhi
{"title":"纳米复合 PVDF 作为压电材料的综合评述:评估制造方法、能效和性能","authors":"Farzane Memarian, Reza Mohammadi, R. Akrami, M. Bodaghi, Mohammad Fotouhi","doi":"10.37819/nanofab.8.1775","DOIUrl":null,"url":null,"abstract":"Given the escalating concerns surrounding high energy consumption during manufacturing and the environmental impact of piezoelectric materials, the pursuit of sustainable alternatives has emerged as a critical challenge in shaping our technological future. In light of this imperative, this review paper investigates the domain of polymeric piezoelectric materials, with a specific focus on Polyvinylidene fluoride (PVDF) as a promising avenue for sustainable piezoelectric materials with a low-energy production process. The primary objective of this investigation is to conduct a comprehensive assessment of the existing research on the manufacturing processes of polymeric piezoelectric materials to enhance piezoelectric properties while minimizing energy-intensive production techniques. Through rigorous evaluation, the effectiveness of each manufacturing method is scrutinized, enabling the identification of the most energy-efficient approaches. This review paper paves the way for sustainable development and advancement of piezoelectric technologies.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"13 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Nanocomposite PVDF as a Piezoelectric Material: Evaluating Manufacturing Methods, Energy Efficiency and Performance\",\"authors\":\"Farzane Memarian, Reza Mohammadi, R. Akrami, M. Bodaghi, Mohammad Fotouhi\",\"doi\":\"10.37819/nanofab.8.1775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the escalating concerns surrounding high energy consumption during manufacturing and the environmental impact of piezoelectric materials, the pursuit of sustainable alternatives has emerged as a critical challenge in shaping our technological future. In light of this imperative, this review paper investigates the domain of polymeric piezoelectric materials, with a specific focus on Polyvinylidene fluoride (PVDF) as a promising avenue for sustainable piezoelectric materials with a low-energy production process. The primary objective of this investigation is to conduct a comprehensive assessment of the existing research on the manufacturing processes of polymeric piezoelectric materials to enhance piezoelectric properties while minimizing energy-intensive production techniques. Through rigorous evaluation, the effectiveness of each manufacturing method is scrutinized, enabling the identification of the most energy-efficient approaches. This review paper paves the way for sustainable development and advancement of piezoelectric technologies.\",\"PeriodicalId\":51992,\"journal\":{\"name\":\"Nanofabrication\",\"volume\":\"13 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanofabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37819/nanofab.8.1775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37819/nanofab.8.1775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
A Comprehensive Review of Nanocomposite PVDF as a Piezoelectric Material: Evaluating Manufacturing Methods, Energy Efficiency and Performance
Given the escalating concerns surrounding high energy consumption during manufacturing and the environmental impact of piezoelectric materials, the pursuit of sustainable alternatives has emerged as a critical challenge in shaping our technological future. In light of this imperative, this review paper investigates the domain of polymeric piezoelectric materials, with a specific focus on Polyvinylidene fluoride (PVDF) as a promising avenue for sustainable piezoelectric materials with a low-energy production process. The primary objective of this investigation is to conduct a comprehensive assessment of the existing research on the manufacturing processes of polymeric piezoelectric materials to enhance piezoelectric properties while minimizing energy-intensive production techniques. Through rigorous evaluation, the effectiveness of each manufacturing method is scrutinized, enabling the identification of the most energy-efficient approaches. This review paper paves the way for sustainable development and advancement of piezoelectric technologies.