利用特征选择和重采样方法优化用于学术成绩分类的神经网络

Mendel Pub Date : 2023-12-20 DOI:10.13164/mendel.2023.2.261
Didi Supriyadi, Purwanto Purwanto, Budi Warsito
{"title":"利用特征选择和重采样方法优化用于学术成绩分类的神经网络","authors":"Didi Supriyadi, Purwanto Purwanto, Budi Warsito","doi":"10.13164/mendel.2023.2.261","DOIUrl":null,"url":null,"abstract":"The features present in large datasets significantly affect the performance of machine learning models. Redundant and irrelevant features will be rejected and cause a decrease in machine learning model performance. This paper proposes HyFeS-ROS-ANN: Hybrid Feature Selection and Resampling combination method for binary classification using artificial neural network multilayer perceptron (MLP).  The first stage of this approach is to use a combination of two feature selection methods to select essential features that are highly correlated with model performance. The second stage of this approach is to use a combination of resampling methods to handle unbalanced data classes. Both approaches are applied to the academic performance classification model using the MLP neural network. This research dataset is obtained using three-dimensional (3D) frameworks such as the Big Five Personality to determine the Personality that affects academic performance from the student dimension, the Family Influence Scale (FIS), which measures factors that affect academic performance from the family dimension, and Higher Education Institutions Service Quality (HEISQUAL) to measure service quality and its influence on academic performance from the Education institution dimension. Previous research shows that the CoR-ANN algorithm has a model accuracy rate of 94%. The research results based on the dataset show that our proposed method can improve accuracy by selecting more relevant and essential features in improving model performance. The results show that the features are reduced from 135 to 108, while the HyFS-ROS-ANN model for binary classification accuracy increases to 100%.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"85 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Neural Networks for Academic Performance Classification Using Feature Selection and Resampling Approach\",\"authors\":\"Didi Supriyadi, Purwanto Purwanto, Budi Warsito\",\"doi\":\"10.13164/mendel.2023.2.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The features present in large datasets significantly affect the performance of machine learning models. Redundant and irrelevant features will be rejected and cause a decrease in machine learning model performance. This paper proposes HyFeS-ROS-ANN: Hybrid Feature Selection and Resampling combination method for binary classification using artificial neural network multilayer perceptron (MLP).  The first stage of this approach is to use a combination of two feature selection methods to select essential features that are highly correlated with model performance. The second stage of this approach is to use a combination of resampling methods to handle unbalanced data classes. Both approaches are applied to the academic performance classification model using the MLP neural network. This research dataset is obtained using three-dimensional (3D) frameworks such as the Big Five Personality to determine the Personality that affects academic performance from the student dimension, the Family Influence Scale (FIS), which measures factors that affect academic performance from the family dimension, and Higher Education Institutions Service Quality (HEISQUAL) to measure service quality and its influence on academic performance from the Education institution dimension. Previous research shows that the CoR-ANN algorithm has a model accuracy rate of 94%. The research results based on the dataset show that our proposed method can improve accuracy by selecting more relevant and essential features in improving model performance. The results show that the features are reduced from 135 to 108, while the HyFS-ROS-ANN model for binary classification accuracy increases to 100%.\",\"PeriodicalId\":38293,\"journal\":{\"name\":\"Mendel\",\"volume\":\"85 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/mendel.2023.2.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2023.2.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型数据集中的特征会极大地影响机器学习模型的性能。冗余和不相关的特征会被剔除,导致机器学习模型性能下降。本文提出了 HyFeS-ROS-ANN:使用人工神经网络多层感知器(MLP)进行二元分类的混合特征选择和重采样组合方法。 该方法的第一阶段是使用两种特征选择方法的组合来选择与模型性能高度相关的基本特征。该方法的第二阶段是结合使用重采样方法来处理不平衡的数据类别。这两种方法都适用于使用 MLP 神经网络的学习成绩分类模型。该研究数据集是通过三维(3D)框架获得的,如从学生维度确定影响学业成绩的人格(Big Five Personality),从家庭维度测量影响学业成绩的因素的家庭影响量表(FIS),以及从教育机构维度测量服务质量及其对学业成绩影响的高等教育机构服务质量(HEISQUAL)。以往的研究表明,CoR-ANN 算法的模型准确率高达 94%。基于该数据集的研究结果表明,我们提出的方法可以通过选择更多相关的基本特征来提高准确率,从而改善模型性能。结果表明,特征从 135 个减少到 108 个,而二元分类的 HyFS-ROS-ANN 模型准确率提高到 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Neural Networks for Academic Performance Classification Using Feature Selection and Resampling Approach
The features present in large datasets significantly affect the performance of machine learning models. Redundant and irrelevant features will be rejected and cause a decrease in machine learning model performance. This paper proposes HyFeS-ROS-ANN: Hybrid Feature Selection and Resampling combination method for binary classification using artificial neural network multilayer perceptron (MLP).  The first stage of this approach is to use a combination of two feature selection methods to select essential features that are highly correlated with model performance. The second stage of this approach is to use a combination of resampling methods to handle unbalanced data classes. Both approaches are applied to the academic performance classification model using the MLP neural network. This research dataset is obtained using three-dimensional (3D) frameworks such as the Big Five Personality to determine the Personality that affects academic performance from the student dimension, the Family Influence Scale (FIS), which measures factors that affect academic performance from the family dimension, and Higher Education Institutions Service Quality (HEISQUAL) to measure service quality and its influence on academic performance from the Education institution dimension. Previous research shows that the CoR-ANN algorithm has a model accuracy rate of 94%. The research results based on the dataset show that our proposed method can improve accuracy by selecting more relevant and essential features in improving model performance. The results show that the features are reduced from 135 to 108, while the HyFS-ROS-ANN model for binary classification accuracy increases to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Detecting Outliers Using Modified Recursive PCA Algorithm For Dynamic Streaming Data Stock and Structured Warrant Portfolio Optimization Using Black-Litterman Model and Binomial Method Optimized Fixed-Time Synergetic Controller via a modified Salp Swarm Algorithm for Acute and Chronic HBV Transmission System Initial Coin Offering Prediction Comparison Using Ridge Regression, Artificial Neural Network, Random Forest Regression, and Hybrid ANN-Ridge Predicting Football Match Outcomes with Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1