{"title":"自发热带气旋生成的小振幅动力学。第 1 部分:放大长波辐射反馈实验","authors":"Hao Fu, Morgan O’Neill","doi":"10.1175/jas-d-23-0170.1","DOIUrl":null,"url":null,"abstract":"\nWhat determines the vortex size at the small-amplitude stage of spontaneous tropical cyclogenesis remains unclear. A doubly periodic domain is a standard setup for numerically studying this problem, but the convectively coupled standing waves inherent to the setup could directly trigger vortices, rendering an unrealistic path for tropical cyclogenesis. We increase the Coriolis parameter to suppress the wave and double the longwave radiative feedback to make the more realistic moisture-radiation instability dominant. Experiments show that the moisture-radiation instability has a short-wavelength cutoff due to the smoothing effect of convective dynamics, which includes the nonlocal convective triggering by cold pools and the nonlocal longwave radiative effect of anvil clouds. By approximating the spread of convective activity as a Gaussian filter on the column humidity, we derive a bulk convective spreading length lcp+av to parameterize the combined effect of cold pools and anvils. Using a novel diagnostic method, the lcp+av is shown to be around 10 km. The contribution of cold pools and anvil clouds to convective spreading is comparable in the doubled radiative feedback experiments. An extrapolation to the normal radiative feedback state shows the anvil clouds play a smaller yet non-negligible role.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":"65 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The small-amplitude dynamics of spontaneous tropical cyclogenesis. Part 1: experiments with amplified longwave radiative feedback\",\"authors\":\"Hao Fu, Morgan O’Neill\",\"doi\":\"10.1175/jas-d-23-0170.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWhat determines the vortex size at the small-amplitude stage of spontaneous tropical cyclogenesis remains unclear. A doubly periodic domain is a standard setup for numerically studying this problem, but the convectively coupled standing waves inherent to the setup could directly trigger vortices, rendering an unrealistic path for tropical cyclogenesis. We increase the Coriolis parameter to suppress the wave and double the longwave radiative feedback to make the more realistic moisture-radiation instability dominant. Experiments show that the moisture-radiation instability has a short-wavelength cutoff due to the smoothing effect of convective dynamics, which includes the nonlocal convective triggering by cold pools and the nonlocal longwave radiative effect of anvil clouds. By approximating the spread of convective activity as a Gaussian filter on the column humidity, we derive a bulk convective spreading length lcp+av to parameterize the combined effect of cold pools and anvils. Using a novel diagnostic method, the lcp+av is shown to be around 10 km. The contribution of cold pools and anvil clouds to convective spreading is comparable in the doubled radiative feedback experiments. An extrapolation to the normal radiative feedback state shows the anvil clouds play a smaller yet non-negligible role.\",\"PeriodicalId\":17231,\"journal\":{\"name\":\"Journal of the Atmospheric Sciences\",\"volume\":\"65 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jas-d-23-0170.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jas-d-23-0170.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The small-amplitude dynamics of spontaneous tropical cyclogenesis. Part 1: experiments with amplified longwave radiative feedback
What determines the vortex size at the small-amplitude stage of spontaneous tropical cyclogenesis remains unclear. A doubly periodic domain is a standard setup for numerically studying this problem, but the convectively coupled standing waves inherent to the setup could directly trigger vortices, rendering an unrealistic path for tropical cyclogenesis. We increase the Coriolis parameter to suppress the wave and double the longwave radiative feedback to make the more realistic moisture-radiation instability dominant. Experiments show that the moisture-radiation instability has a short-wavelength cutoff due to the smoothing effect of convective dynamics, which includes the nonlocal convective triggering by cold pools and the nonlocal longwave radiative effect of anvil clouds. By approximating the spread of convective activity as a Gaussian filter on the column humidity, we derive a bulk convective spreading length lcp+av to parameterize the combined effect of cold pools and anvils. Using a novel diagnostic method, the lcp+av is shown to be around 10 km. The contribution of cold pools and anvil clouds to convective spreading is comparable in the doubled radiative feedback experiments. An extrapolation to the normal radiative feedback state shows the anvil clouds play a smaller yet non-negligible role.
期刊介绍:
The Journal of the Atmospheric Sciences (JAS) publishes basic research related to the physics, dynamics, and chemistry of the atmosphere of Earth and other planets, with emphasis on the quantitative and deductive aspects of the subject.
The links provide detailed information for readers, authors, reviewers, and those who wish to submit a manuscript for consideration.