结合 CNN 和 SVM 改进扫描上下文描述符的视觉机器人位置识别能力

Pub Date : 2023-12-20 DOI:10.20965/jrm.2023.p1622
Minying Ye, Kanji Tanaka
{"title":"结合 CNN 和 SVM 改进扫描上下文描述符的视觉机器人位置识别能力","authors":"Minying Ye, Kanji Tanaka","doi":"10.20965/jrm.2023.p1622","DOIUrl":null,"url":null,"abstract":"Visual place recognition from a 3D laser LiDAR is one of the most active research areas in robotics. Especially, learning and recognition of scene descriptors, such as scan context descriptors that map 3D point clouds to 2D point clouds, is one of the promising research directions. Although the scan-context descriptor has a sufficiently high recognition performance, it is still expensive image data and cannot be handled with low-capacity non-deep models. In this paper, we explore the task of compressing the scan context descriptor model while maintaining its recognition performance. To this end, the proposed approach slightly modifies the off-the-shelf classifier model of convolutional neural networks (CNN) from its basis, by replacing the SoftMax part with a support vector machine (SVM). Experiments with publicly available NCLT dataset validate the effectiveness of the proposed approach.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Visual Robot Place Recognition of Scan-Context Descriptors by Combining with CNN and SVM\",\"authors\":\"Minying Ye, Kanji Tanaka\",\"doi\":\"10.20965/jrm.2023.p1622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual place recognition from a 3D laser LiDAR is one of the most active research areas in robotics. Especially, learning and recognition of scene descriptors, such as scan context descriptors that map 3D point clouds to 2D point clouds, is one of the promising research directions. Although the scan-context descriptor has a sufficiently high recognition performance, it is still expensive image data and cannot be handled with low-capacity non-deep models. In this paper, we explore the task of compressing the scan context descriptor model while maintaining its recognition performance. To this end, the proposed approach slightly modifies the off-the-shelf classifier model of convolutional neural networks (CNN) from its basis, by replacing the SoftMax part with a support vector machine (SVM). Experiments with publicly available NCLT dataset validate the effectiveness of the proposed approach.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p1622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从三维激光激光雷达进行视觉地点识别是机器人学领域最活跃的研究领域之一。尤其是场景描述符的学习和识别,如将三维点云映射到二维点云的扫描上下文描述符,是前景广阔的研究方向之一。虽然扫描上下文描述符具有足够高的识别性能,但它仍然是昂贵的图像数据,无法用低容量的非深度模型来处理。在本文中,我们探讨了在保持扫描上下文描述符识别性能的同时压缩扫描上下文描述符模型的任务。为此,我们提出的方法在卷积神经网络(CNN)的基础上对现成的分类器模型稍作修改,用支持向量机(SVM)取代了 SoftMax 部分。利用公开的 NCLT 数据集进行的实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Improved Visual Robot Place Recognition of Scan-Context Descriptors by Combining with CNN and SVM
Visual place recognition from a 3D laser LiDAR is one of the most active research areas in robotics. Especially, learning and recognition of scene descriptors, such as scan context descriptors that map 3D point clouds to 2D point clouds, is one of the promising research directions. Although the scan-context descriptor has a sufficiently high recognition performance, it is still expensive image data and cannot be handled with low-capacity non-deep models. In this paper, we explore the task of compressing the scan context descriptor model while maintaining its recognition performance. To this end, the proposed approach slightly modifies the off-the-shelf classifier model of convolutional neural networks (CNN) from its basis, by replacing the SoftMax part with a support vector machine (SVM). Experiments with publicly available NCLT dataset validate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1