Zhao Zhang, Ya-ju Li, Guanghui Yang, Qiang Zeng, Xiaolong Li, Liangwen Chen, D. Qian, Dui-xiong Sun, Maogen Su, Lei Yang, Shaofeng Zhang, Xinwen Ma
{"title":"利用激光诱导击穿光谱与机器学习算法相结合估算微晶粒材料的晶粒尺寸","authors":"Zhao Zhang, Ya-ju Li, Guanghui Yang, Qiang Zeng, Xiaolong Li, Liangwen Chen, D. Qian, Dui-xiong Sun, Maogen Su, Lei Yang, Shaofeng Zhang, Xinwen Ma","doi":"10.1088/2058-6272/ad1792","DOIUrl":null,"url":null,"abstract":"\n Recent work validated a new method for estimating grain size of microgranular materials in the range of tens-to-hundreds micrometers using laser-induced breakdown spectroscopy (LIBS). In that situation, univariate analysis was performed and a piecewise model has to be constructed for achieving the estimation of the grain size within such a wide range. This is due to the fact that a complex dependence of plasma formation environment (i.e., the status of luminous plasma and therefore LIBS signal to be measured) on grain size occurs in the size range studied there. In the present work, we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes. Specifically, two unified multivariate calibration models are constructed based on back-propagation neural network (BPNN) algorithms using the feature selection strategies with and without considering physical prior knowledge, respectively. By detailed analysis of the performances of the two multivariate models, it was found that, a unified calibration model can be constructed successfully based on BPNN algorithms for estimating the grain size in the range of tens-to-hundreds micrometers. It was also found that this model constructed with a physics-guided feature selection strategy has better prediction performances. This study has practical significance in developing the technology for material analysis using LIBS, especially in the case that LIBS signal exhibits a complex dependence on the material parameter to be estimated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms\",\"authors\":\"Zhao Zhang, Ya-ju Li, Guanghui Yang, Qiang Zeng, Xiaolong Li, Liangwen Chen, D. Qian, Dui-xiong Sun, Maogen Su, Lei Yang, Shaofeng Zhang, Xinwen Ma\",\"doi\":\"10.1088/2058-6272/ad1792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recent work validated a new method for estimating grain size of microgranular materials in the range of tens-to-hundreds micrometers using laser-induced breakdown spectroscopy (LIBS). In that situation, univariate analysis was performed and a piecewise model has to be constructed for achieving the estimation of the grain size within such a wide range. This is due to the fact that a complex dependence of plasma formation environment (i.e., the status of luminous plasma and therefore LIBS signal to be measured) on grain size occurs in the size range studied there. In the present work, we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes. Specifically, two unified multivariate calibration models are constructed based on back-propagation neural network (BPNN) algorithms using the feature selection strategies with and without considering physical prior knowledge, respectively. By detailed analysis of the performances of the two multivariate models, it was found that, a unified calibration model can be constructed successfully based on BPNN algorithms for estimating the grain size in the range of tens-to-hundreds micrometers. It was also found that this model constructed with a physics-guided feature selection strategy has better prediction performances. This study has practical significance in developing the technology for material analysis using LIBS, especially in the case that LIBS signal exhibits a complex dependence on the material parameter to be estimated.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-6272/ad1792\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad1792","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimating grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms
Recent work validated a new method for estimating grain size of microgranular materials in the range of tens-to-hundreds micrometers using laser-induced breakdown spectroscopy (LIBS). In that situation, univariate analysis was performed and a piecewise model has to be constructed for achieving the estimation of the grain size within such a wide range. This is due to the fact that a complex dependence of plasma formation environment (i.e., the status of luminous plasma and therefore LIBS signal to be measured) on grain size occurs in the size range studied there. In the present work, we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes. Specifically, two unified multivariate calibration models are constructed based on back-propagation neural network (BPNN) algorithms using the feature selection strategies with and without considering physical prior knowledge, respectively. By detailed analysis of the performances of the two multivariate models, it was found that, a unified calibration model can be constructed successfully based on BPNN algorithms for estimating the grain size in the range of tens-to-hundreds micrometers. It was also found that this model constructed with a physics-guided feature selection strategy has better prediction performances. This study has practical significance in developing the technology for material analysis using LIBS, especially in the case that LIBS signal exhibits a complex dependence on the material parameter to be estimated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.