CK2/ECE1c伙伴关系:揭示癌症侵袭性的途径

Karla Villalobos-Nova, M. A. Toro, Pablo Pérez-Moreno, Ignacio Niechi, Julio C. Tapia
{"title":"CK2/ECE1c伙伴关系:揭示癌症侵袭性的途径","authors":"Karla Villalobos-Nova, M. A. Toro, Pablo Pérez-Moreno, Ignacio Niechi, Julio C. Tapia","doi":"10.3390/kinasesphosphatases2010001","DOIUrl":null,"url":null,"abstract":"The endothelin-1 (ET1) peptide has a pathological role in the activation of proliferation, survival and invasiveness pathways in different cancers. ET1’s effects rely on its activation by the endothelin-converting enzyme-1 (ECE1), which is expressed as four isoforms, differing only in their cytoplasmic N-terminuses. We already demonstrated in colorectal cancer, glioblastoma, and preliminarily lung cancer, that the isoform ECE1c heightens aggressiveness by promoting cancer stem cell traits. This is achieved through a non-canonical ET1-independent mechanism of enhancement of ECE1c’s stability upon CK2-dependent phosphorylation at S18 and S20. Here, a K6 residue is presumably responsible for ECE1c ubiquitination as its mutation to R impairs proteasomal degradation. However, how phosphorylation enhances ECE1c’s stability and how this translates into aggressiveness are still open questions. In this brief report, by swapping residues to either phospho-mimetic or phospho-resistant amino acids, we propose that the N-terminus may also be phosphorylated at Y5 and/or T9 by an unknown kinase(s). In addition, N-terminus phosphorylation may lead to a blockage of K6 ubiquitination, increasing ECE1c’s stability and presumably activating the Wnt/β-catenin signaling pathway. Thus, a novel CK2/ECE1c partnership may be emerging to promote aggressiveness and thus become a biomarker of poor prognosis and a potential therapeutic target for several cancers.","PeriodicalId":74042,"journal":{"name":"Kinases and phosphatases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The CK2/ECE1c Partnership: An Unveiled Pathway to Aggressiveness in Cancer\",\"authors\":\"Karla Villalobos-Nova, M. A. Toro, Pablo Pérez-Moreno, Ignacio Niechi, Julio C. Tapia\",\"doi\":\"10.3390/kinasesphosphatases2010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The endothelin-1 (ET1) peptide has a pathological role in the activation of proliferation, survival and invasiveness pathways in different cancers. ET1’s effects rely on its activation by the endothelin-converting enzyme-1 (ECE1), which is expressed as four isoforms, differing only in their cytoplasmic N-terminuses. We already demonstrated in colorectal cancer, glioblastoma, and preliminarily lung cancer, that the isoform ECE1c heightens aggressiveness by promoting cancer stem cell traits. This is achieved through a non-canonical ET1-independent mechanism of enhancement of ECE1c’s stability upon CK2-dependent phosphorylation at S18 and S20. Here, a K6 residue is presumably responsible for ECE1c ubiquitination as its mutation to R impairs proteasomal degradation. However, how phosphorylation enhances ECE1c’s stability and how this translates into aggressiveness are still open questions. In this brief report, by swapping residues to either phospho-mimetic or phospho-resistant amino acids, we propose that the N-terminus may also be phosphorylated at Y5 and/or T9 by an unknown kinase(s). In addition, N-terminus phosphorylation may lead to a blockage of K6 ubiquitination, increasing ECE1c’s stability and presumably activating the Wnt/β-catenin signaling pathway. Thus, a novel CK2/ECE1c partnership may be emerging to promote aggressiveness and thus become a biomarker of poor prognosis and a potential therapeutic target for several cancers.\",\"PeriodicalId\":74042,\"journal\":{\"name\":\"Kinases and phosphatases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinases and phosphatases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/kinasesphosphatases2010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinases and phosphatases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/kinasesphosphatases2010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内皮素-1(ET1)肽在激活不同癌症的增殖、存活和侵袭途径中起着病理作用。ET1 的作用依赖于内皮素转换酶-1(ECE1)的激活,ECE1 表达为四种异构体,只有胞质 N 端不同。我们已经在结直肠癌、胶质母细胞瘤和肺癌初步研究中证实,ECE1c异构体通过促进癌症干细胞特性来提高侵袭性。这是通过一种非经典的、不依赖于 ET1 的机制实现的,即在 S18 和 S20 处发生依赖于 CK2 的磷酸化后,ECE1c 的稳定性会增强。这里,K6 残基可能是 ECE1c 泛素化的原因,因为其突变为 R 会影响蛋白酶体降解。然而,磷酸化如何增强 ECE1c 的稳定性以及如何将其转化为侵袭性仍是未决问题。在这篇简短的报告中,通过将残基交换为磷酸化模拟氨基酸或磷酸化抗性氨基酸,我们提出 N 端也可能在 Y5 和/或 T9 处被未知激酶磷酸化。此外,N-端磷酸化可能导致 K6 泛素化受阻,从而增加 ECE1c 的稳定性,并可能激活 Wnt/β-catenin 信号通路。因此,一种新型的 CK2/ECE1c 伙伴关系可能会促进侵袭性,从而成为预后不良的生物标志物和几种癌症的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The CK2/ECE1c Partnership: An Unveiled Pathway to Aggressiveness in Cancer
The endothelin-1 (ET1) peptide has a pathological role in the activation of proliferation, survival and invasiveness pathways in different cancers. ET1’s effects rely on its activation by the endothelin-converting enzyme-1 (ECE1), which is expressed as four isoforms, differing only in their cytoplasmic N-terminuses. We already demonstrated in colorectal cancer, glioblastoma, and preliminarily lung cancer, that the isoform ECE1c heightens aggressiveness by promoting cancer stem cell traits. This is achieved through a non-canonical ET1-independent mechanism of enhancement of ECE1c’s stability upon CK2-dependent phosphorylation at S18 and S20. Here, a K6 residue is presumably responsible for ECE1c ubiquitination as its mutation to R impairs proteasomal degradation. However, how phosphorylation enhances ECE1c’s stability and how this translates into aggressiveness are still open questions. In this brief report, by swapping residues to either phospho-mimetic or phospho-resistant amino acids, we propose that the N-terminus may also be phosphorylated at Y5 and/or T9 by an unknown kinase(s). In addition, N-terminus phosphorylation may lead to a blockage of K6 ubiquitination, increasing ECE1c’s stability and presumably activating the Wnt/β-catenin signaling pathway. Thus, a novel CK2/ECE1c partnership may be emerging to promote aggressiveness and thus become a biomarker of poor prognosis and a potential therapeutic target for several cancers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protein Kinases in Copper Homeostasis: A Review on Cu+-ATPase Modulation Dynamic Equilibrium of Protein Phosphorylation by Kinases and Phosphatases Visualized by Phos-Tag SDS-PAGE Exogenous and Endogenous Molecules Potentially Proficient to Modulate Mitophagy in Cardiac Disorders Cancer Stem Cell Metastatic Checkpoints and Glycosylation Patterns: Implications for Therapeutic Strategies Short-Chain Fatty Acids Suppress mTOR Signaling in Colon Cancer Cells via Long Non-Coding RNA RMST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1