{"title":"热扩散介质中与记忆相关的三相滞后热弹性","authors":"A. Yadav, Aarti Singh, Paweł Jurczak","doi":"10.59441/ijame/172631","DOIUrl":null,"url":null,"abstract":"The objective of the paper is to look at the propagation and reflection of plane waves in a thermo-diffusion isotropic medium. The reflection of plane waves in a thermo-diffusion medium was investigated in this study with reference to triple phase lag thermo-elasticity. The memory dependent derivative (MDD) is applied for this investigation. The fundamental equations are framed and solved for a particular plane. The four plane waves that are propagating across the medium are, shown namely: longitudinal displacement, P-wave, thermal diffusion T-wave, mass diffusion MD-wave and shear vertical SV-wave. These four plane wave velocities are listed for a specific medium, illustrating the impact of the diffusion coefficient and are graphically represented. Expressions for the reflection coefficient for the incidence plane wave are produced from research on the reflection of plane waves from the stress-free surface. It should be noted that these ratios are graphically represented and shown when diffusion and memory dependent derivative (MDD) factors are in play. The new model is relevant to many different fields, including semiconductors, earth- engineering, and electronics, among others, where thermo-diffusion elasticity is significant. Diffusion is a technique that can be applied to the production of integrated circuits, MOS transistors, doped polysilicon gates for the base and emitter in transistors, as well as for efficient oil extraction from oil reserves. Wave propagation in a thermos-diffusion elastic media provides crucial information about the presence of fresh and enhanced waves in a variety of technical and geophysical contexts. For experimental seismologists, developers of new materials, and researchers, this model might be useful in revising earthquake estimates.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory dependent triple-phase-lag thermo-elasticity in thermo-diffusive medium\",\"authors\":\"A. Yadav, Aarti Singh, Paweł Jurczak\",\"doi\":\"10.59441/ijame/172631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of the paper is to look at the propagation and reflection of plane waves in a thermo-diffusion isotropic medium. The reflection of plane waves in a thermo-diffusion medium was investigated in this study with reference to triple phase lag thermo-elasticity. The memory dependent derivative (MDD) is applied for this investigation. The fundamental equations are framed and solved for a particular plane. The four plane waves that are propagating across the medium are, shown namely: longitudinal displacement, P-wave, thermal diffusion T-wave, mass diffusion MD-wave and shear vertical SV-wave. These four plane wave velocities are listed for a specific medium, illustrating the impact of the diffusion coefficient and are graphically represented. Expressions for the reflection coefficient for the incidence plane wave are produced from research on the reflection of plane waves from the stress-free surface. It should be noted that these ratios are graphically represented and shown when diffusion and memory dependent derivative (MDD) factors are in play. The new model is relevant to many different fields, including semiconductors, earth- engineering, and electronics, among others, where thermo-diffusion elasticity is significant. Diffusion is a technique that can be applied to the production of integrated circuits, MOS transistors, doped polysilicon gates for the base and emitter in transistors, as well as for efficient oil extraction from oil reserves. Wave propagation in a thermos-diffusion elastic media provides crucial information about the presence of fresh and enhanced waves in a variety of technical and geophysical contexts. For experimental seismologists, developers of new materials, and researchers, this model might be useful in revising earthquake estimates.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\" 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59441/ijame/172631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame/172631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
摘要
本文旨在研究平面波在热扩散各向同性介质中的传播和反射。本研究参照三相滞后热弹性,对平面波在热扩散介质中的反射进行了研究。本研究采用了记忆相关导数(MDD)。对特定平面的基本方程进行了构建和求解。在介质中传播的四种平面波分别为:纵向位移 P 波、热扩散 T 波、质量扩散 MD 波和剪切垂直 SV 波。列出了特定介质的这四种平面波速度,说明了扩散系数的影响,并以图形表示。入射平面波反射系数的表达式是根据对无应力表面平面波反射的研究得出的。值得注意的是,这些比率是在扩散和记忆相关导数(MDD)因素起作用时以图形表示和显示的。新模型适用于许多不同领域,包括半导体、地球工程和电子等热扩散弹性重要的领域。扩散技术可用于生产集成电路、MOS 晶体管、晶体管基极和发射极的掺杂多晶硅栅极,以及从石油储备中高效提取石油。波在热扩散弹性介质中的传播为各种技术和地球物理领域提供了有关新波和增强波存在的重要信息。对于实验地震学家、新材料开发人员和研究人员来说,该模型可能有助于修订地震估计值。
Memory dependent triple-phase-lag thermo-elasticity in thermo-diffusive medium
The objective of the paper is to look at the propagation and reflection of plane waves in a thermo-diffusion isotropic medium. The reflection of plane waves in a thermo-diffusion medium was investigated in this study with reference to triple phase lag thermo-elasticity. The memory dependent derivative (MDD) is applied for this investigation. The fundamental equations are framed and solved for a particular plane. The four plane waves that are propagating across the medium are, shown namely: longitudinal displacement, P-wave, thermal diffusion T-wave, mass diffusion MD-wave and shear vertical SV-wave. These four plane wave velocities are listed for a specific medium, illustrating the impact of the diffusion coefficient and are graphically represented. Expressions for the reflection coefficient for the incidence plane wave are produced from research on the reflection of plane waves from the stress-free surface. It should be noted that these ratios are graphically represented and shown when diffusion and memory dependent derivative (MDD) factors are in play. The new model is relevant to many different fields, including semiconductors, earth- engineering, and electronics, among others, where thermo-diffusion elasticity is significant. Diffusion is a technique that can be applied to the production of integrated circuits, MOS transistors, doped polysilicon gates for the base and emitter in transistors, as well as for efficient oil extraction from oil reserves. Wave propagation in a thermos-diffusion elastic media provides crucial information about the presence of fresh and enhanced waves in a variety of technical and geophysical contexts. For experimental seismologists, developers of new materials, and researchers, this model might be useful in revising earthquake estimates.
期刊介绍:
INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.