{"title":"近紫外高响应硅雪崩光电二极管结构设计研究","authors":"Guangtong Guo, Wei Chen, Kaifeng Zheng, Jinguang Lv, Yuxin Qin, Baixuan Zhao, Yingze Zhao, Yupeng Chen, Dan-ning Gao, Jingqiu Liang, Weibiao Wang","doi":"10.3390/photonics11010001","DOIUrl":null,"url":null,"abstract":"To improve the low responsivity of the silicon avalanche photodiode in the near-ultraviolet wavelength range, we designed a near-ultraviolet highly responsive Si-APD basic structure with a multiplication layer neighboring the photosensitive surface through the analysis of the optical absorption characteristics, junction breakdown characteristics, and avalanche multiplication characteristics. The dark current and electric field distribution of the device were investigated. Meanwhile, the structural parameters of the surface non-depleted layer, multiplication layer, and absorption layer were optimized. It was found that the breakdown voltage of the device is 21.07 V. At an applied bias voltage of 20.02 V, the device exhibits a responsivity of 6.79–14.51 A/W in the wavelength range of 300–400 nm. These results provide valuable insights for the design of silicon avalanche photodiode with high responsivity in the near-ultraviolet range.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":" 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Structure Design of Silicon Avalanche Photodiode with Near-Ultraviolet High Responsivity\",\"authors\":\"Guangtong Guo, Wei Chen, Kaifeng Zheng, Jinguang Lv, Yuxin Qin, Baixuan Zhao, Yingze Zhao, Yupeng Chen, Dan-ning Gao, Jingqiu Liang, Weibiao Wang\",\"doi\":\"10.3390/photonics11010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the low responsivity of the silicon avalanche photodiode in the near-ultraviolet wavelength range, we designed a near-ultraviolet highly responsive Si-APD basic structure with a multiplication layer neighboring the photosensitive surface through the analysis of the optical absorption characteristics, junction breakdown characteristics, and avalanche multiplication characteristics. The dark current and electric field distribution of the device were investigated. Meanwhile, the structural parameters of the surface non-depleted layer, multiplication layer, and absorption layer were optimized. It was found that the breakdown voltage of the device is 21.07 V. At an applied bias voltage of 20.02 V, the device exhibits a responsivity of 6.79–14.51 A/W in the wavelength range of 300–400 nm. These results provide valuable insights for the design of silicon avalanche photodiode with high responsivity in the near-ultraviolet range.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010001\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010001","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Research on the Structure Design of Silicon Avalanche Photodiode with Near-Ultraviolet High Responsivity
To improve the low responsivity of the silicon avalanche photodiode in the near-ultraviolet wavelength range, we designed a near-ultraviolet highly responsive Si-APD basic structure with a multiplication layer neighboring the photosensitive surface through the analysis of the optical absorption characteristics, junction breakdown characteristics, and avalanche multiplication characteristics. The dark current and electric field distribution of the device were investigated. Meanwhile, the structural parameters of the surface non-depleted layer, multiplication layer, and absorption layer were optimized. It was found that the breakdown voltage of the device is 21.07 V. At an applied bias voltage of 20.02 V, the device exhibits a responsivity of 6.79–14.51 A/W in the wavelength range of 300–400 nm. These results provide valuable insights for the design of silicon avalanche photodiode with high responsivity in the near-ultraviolet range.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.