螺旋加固混凝土样品实验研究中的非参数数据处理

G. Tonkikh, V. A. Neshchadimov, I. A. Averin
{"title":"螺旋加固混凝土样品实验研究中的非参数数据处理","authors":"G. Tonkikh, V. A. Neshchadimov, I. A. Averin","doi":"10.37538/2224-9494-2023-4(39)-95-105","DOIUrl":null,"url":null,"abstract":"Introduction. Statistical methods in the analysis of experimental data can be applied to identify patterns and test hypotheses, determine the quality of experimental data and draw conclusions based on objective data. In addition, experimental data after non-parametric processing can be used in numerical modeling using contemporary computing suites.Aim. To outline a methodology for non-parametric processing of experimental results using SCAD computing suite tools, certified in the territory of the Russian Federation. In the proposed methodology, experimental test data for spirally reinforced concrete samples of various strengths were used.Results. As a result of non-parametric processing of spirally reinforced concrete samples, empirical coefficients of the Prandtl bilinear diagram were determined according to the proposed method. This diagram is used in the SCAD computing suite to set the physical nonlinearity of the material behavior. A method for processing a small volume of experimental results is proposed for using the available data in SCAD CS numerical studies with an acceptable level of probability.Conclusions. The empirical coefficients, obtained in non-parametric processing for setting the Prandtl bilinear diagram, can be used to perform a numerical modeling of the sample bahavior for planning further experimental studies in order to find more general patterns, taking into account other behavioral factors of real structural elements in load-bearing systems of buildings and structures with spiral reinforcement, including high-intensity dynamic effects. According to experimental and theoretical studies, spiral reinforcement can significantly increase the deformability and energy capacity of reinforced concrete structures, which fundamentally affects the behavioral pattern of structures and supporting framework of buildings and structures as a whole. These behavioral features of spirally reinforced structures can be further taken into account for the computational justification of design solutions in the SCAD CS and other software programs using the Padé approximation of the Prandtl bilinear diagram.","PeriodicalId":169749,"journal":{"name":"Bulletin of Science and Research Center of Construction","volume":"7 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-parametric data processing in experimental studies of spirally reinforced concrete samples\",\"authors\":\"G. Tonkikh, V. A. Neshchadimov, I. A. Averin\",\"doi\":\"10.37538/2224-9494-2023-4(39)-95-105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Statistical methods in the analysis of experimental data can be applied to identify patterns and test hypotheses, determine the quality of experimental data and draw conclusions based on objective data. In addition, experimental data after non-parametric processing can be used in numerical modeling using contemporary computing suites.Aim. To outline a methodology for non-parametric processing of experimental results using SCAD computing suite tools, certified in the territory of the Russian Federation. In the proposed methodology, experimental test data for spirally reinforced concrete samples of various strengths were used.Results. As a result of non-parametric processing of spirally reinforced concrete samples, empirical coefficients of the Prandtl bilinear diagram were determined according to the proposed method. This diagram is used in the SCAD computing suite to set the physical nonlinearity of the material behavior. A method for processing a small volume of experimental results is proposed for using the available data in SCAD CS numerical studies with an acceptable level of probability.Conclusions. The empirical coefficients, obtained in non-parametric processing for setting the Prandtl bilinear diagram, can be used to perform a numerical modeling of the sample bahavior for planning further experimental studies in order to find more general patterns, taking into account other behavioral factors of real structural elements in load-bearing systems of buildings and structures with spiral reinforcement, including high-intensity dynamic effects. According to experimental and theoretical studies, spiral reinforcement can significantly increase the deformability and energy capacity of reinforced concrete structures, which fundamentally affects the behavioral pattern of structures and supporting framework of buildings and structures as a whole. These behavioral features of spirally reinforced structures can be further taken into account for the computational justification of design solutions in the SCAD CS and other software programs using the Padé approximation of the Prandtl bilinear diagram.\",\"PeriodicalId\":169749,\"journal\":{\"name\":\"Bulletin of Science and Research Center of Construction\",\"volume\":\"7 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Science and Research Center of Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37538/2224-9494-2023-4(39)-95-105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Science and Research Center of Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37538/2224-9494-2023-4(39)-95-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引言实验数据分析中的统计方法可用于识别模式和检验假设、确定实验数据的质量以及根据客观数据得出结论。此外,经过非参数处理的实验数据可用于使用现代计算套件进行数值建模。概述使用 SCAD 计算套件工具对实验结果进行非参数处理的方法,该工具已在俄罗斯联邦境内获得认证。在提出的方法中,使用了不同强度的螺旋加固混凝土样本的实验测试数据。在对螺旋加固混凝土样本进行非参数处理后,根据建议的方法确定了普兰德双线性图的经验系数。该图在 SCAD 计算套件中用于设置材料行为的物理非线性。提出了一种处理少量实验结果的方法,以便在 SCAD CS 数值研究中以可接受的概率水平使用可用数据。在设置普朗特双线性图的非参数处理过程中获得的经验系数可用于对样本行为进行数值建模,以规划进一步的实验研究,从而找到更普遍的模式,同时考虑到建筑物承重系统中实际结构元素的其他行为因素和螺旋加固结构,包括高强度动态效应。根据实验和理论研究,螺旋配筋可显著提高钢筋混凝土结构的变形能力和能量容量,从根本上影响结构的行为模式以及建筑物和结构的整体支撑框架。螺旋加固结构的这些行为特征可以在 SCAD CS 和其他使用普朗特双线性图的 Padé 近似软件程序中进一步考虑,以便对设计方案进行计算论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-parametric data processing in experimental studies of spirally reinforced concrete samples
Introduction. Statistical methods in the analysis of experimental data can be applied to identify patterns and test hypotheses, determine the quality of experimental data and draw conclusions based on objective data. In addition, experimental data after non-parametric processing can be used in numerical modeling using contemporary computing suites.Aim. To outline a methodology for non-parametric processing of experimental results using SCAD computing suite tools, certified in the territory of the Russian Federation. In the proposed methodology, experimental test data for spirally reinforced concrete samples of various strengths were used.Results. As a result of non-parametric processing of spirally reinforced concrete samples, empirical coefficients of the Prandtl bilinear diagram were determined according to the proposed method. This diagram is used in the SCAD computing suite to set the physical nonlinearity of the material behavior. A method for processing a small volume of experimental results is proposed for using the available data in SCAD CS numerical studies with an acceptable level of probability.Conclusions. The empirical coefficients, obtained in non-parametric processing for setting the Prandtl bilinear diagram, can be used to perform a numerical modeling of the sample bahavior for planning further experimental studies in order to find more general patterns, taking into account other behavioral factors of real structural elements in load-bearing systems of buildings and structures with spiral reinforcement, including high-intensity dynamic effects. According to experimental and theoretical studies, spiral reinforcement can significantly increase the deformability and energy capacity of reinforced concrete structures, which fundamentally affects the behavioral pattern of structures and supporting framework of buildings and structures as a whole. These behavioral features of spirally reinforced structures can be further taken into account for the computational justification of design solutions in the SCAD CS and other software programs using the Padé approximation of the Prandtl bilinear diagram.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method of reinforcing defects in field welds of unique buildings and structures Features of a finite-element modeling of a tubular tower for a wind-power unit Half-precast “crossbar-slab-column” frame joint Normal section strength of eccentrically compressed reinforced concrete structures with loop reinforcement joints. Experimental studies Non-parametric data processing in experimental studies of spirally reinforced concrete samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1