惯性卫星导航系统中的全球导航卫星系统欺骗检测

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY Inventions Pub Date : 2023-12-16 DOI:10.3390/inventions8060158
Maxim V. Zharkov, Konstantin K. Veremeenko, Ivan M. Kuznetsov, A. Pronkin
{"title":"惯性卫星导航系统中的全球导航卫星系统欺骗检测","authors":"Maxim V. Zharkov, Konstantin K. Veremeenko, Ivan M. Kuznetsov, A. Pronkin","doi":"10.3390/inventions8060158","DOIUrl":null,"url":null,"abstract":"The susceptibility of global navigation satellite systems (GNSSs) to interference significantly limits the possibility of their use. From the standpoint of possible consequences, the most dangerous interference is the so-called spoofing. Simultaneously, in most cases of GNSS use, an inertial navigation system (INS) or an attitude and heading reference system (AHRS) is also present on the board of mobile objects. In this regard, the research goal is to assess the possibility of detecting GNSS spoofing in inertial satellite navigation systems. This paper examines the method for detecting GNSS spoofing by combining a pair of commercially available GNSS receivers and antennas with an INS or AHRS. The method is based on a comparison of the double differences of GNSS carrier phase measurements performed by receivers under conditions of resolved integer ambiguity and the values of the range double differences predicted using an INS. GNSS carrier phase integer ambiguity can be resolved using a strapdown inertial navigation system (SINS) or AHRS data. The mathematical model of GNSS phase difference measurements and the SINS-predicted satellite range differences model are given. The proposed algorithm calculates the moving average of the residuals between the SINS-predicted satellite range double differences and the measured GNSS carrier phase double differences. The primary criterion for spoofing detection is the specified threshold excess of the moving average of the double difference residuals. Experimental studies are performed using simulation and hardware-in-the-loop simulation. The experimental results allow us to evaluate the efficiency of the proposed approach and estimate the potential characteristics of the spoofing detection algorithm based on it.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Navigation Satellite System Spoofing Detection in Inertial Satellite Navigation Systems\",\"authors\":\"Maxim V. Zharkov, Konstantin K. Veremeenko, Ivan M. Kuznetsov, A. Pronkin\",\"doi\":\"10.3390/inventions8060158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The susceptibility of global navigation satellite systems (GNSSs) to interference significantly limits the possibility of their use. From the standpoint of possible consequences, the most dangerous interference is the so-called spoofing. Simultaneously, in most cases of GNSS use, an inertial navigation system (INS) or an attitude and heading reference system (AHRS) is also present on the board of mobile objects. In this regard, the research goal is to assess the possibility of detecting GNSS spoofing in inertial satellite navigation systems. This paper examines the method for detecting GNSS spoofing by combining a pair of commercially available GNSS receivers and antennas with an INS or AHRS. The method is based on a comparison of the double differences of GNSS carrier phase measurements performed by receivers under conditions of resolved integer ambiguity and the values of the range double differences predicted using an INS. GNSS carrier phase integer ambiguity can be resolved using a strapdown inertial navigation system (SINS) or AHRS data. The mathematical model of GNSS phase difference measurements and the SINS-predicted satellite range differences model are given. The proposed algorithm calculates the moving average of the residuals between the SINS-predicted satellite range double differences and the measured GNSS carrier phase double differences. The primary criterion for spoofing detection is the specified threshold excess of the moving average of the double difference residuals. Experimental studies are performed using simulation and hardware-in-the-loop simulation. The experimental results allow us to evaluate the efficiency of the proposed approach and estimate the potential characteristics of the spoofing detection algorithm based on it.\",\"PeriodicalId\":14564,\"journal\":{\"name\":\"Inventions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inventions8060158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions8060158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球导航卫星系统易受干扰,这极大地限制了其使用的可能性。从可能造成的后果来看,最危险的干扰是所谓的欺骗。与此同时,在使用全球导航卫星系统的大多数情况下,移动物体上还装有惯性导航系统(INS)或姿态和航向参考系统(AHRS)。在这方面,研究目标是评估在惯性卫星导航系统中检测全球导航卫星系统欺骗的可能性。本文研究了通过将一对商用全球导航卫星系统接收器和天线与 INS 或 AHRS 相结合来检测全球导航卫星系统欺骗的方法。该方法基于接收器在已解决的整数模糊条件下进行的 GNSS 载波相位测量的双差值与使用 INS 预测的测距双差值的比较。全球导航卫星系统载波相位整数模糊性可通过带下惯性导航系统(SINS)或 AHRS 数据来解决。给出了 GNSS 相位差测量的数学模型和 SINS 预测的卫星测距差模型。提出的算法计算 SINS 预测的卫星测距双差与测得的 GNSS 载波相位双差之间残差的移动平均值。欺骗检测的主要标准是双差残差移动平均值的指定阈值超出部分。实验研究是通过模拟和硬件在环仿真进行的。实验结果使我们能够评估所提出方法的效率,并估计基于该方法的欺骗检测算法的潜在特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global Navigation Satellite System Spoofing Detection in Inertial Satellite Navigation Systems
The susceptibility of global navigation satellite systems (GNSSs) to interference significantly limits the possibility of their use. From the standpoint of possible consequences, the most dangerous interference is the so-called spoofing. Simultaneously, in most cases of GNSS use, an inertial navigation system (INS) or an attitude and heading reference system (AHRS) is also present on the board of mobile objects. In this regard, the research goal is to assess the possibility of detecting GNSS spoofing in inertial satellite navigation systems. This paper examines the method for detecting GNSS spoofing by combining a pair of commercially available GNSS receivers and antennas with an INS or AHRS. The method is based on a comparison of the double differences of GNSS carrier phase measurements performed by receivers under conditions of resolved integer ambiguity and the values of the range double differences predicted using an INS. GNSS carrier phase integer ambiguity can be resolved using a strapdown inertial navigation system (SINS) or AHRS data. The mathematical model of GNSS phase difference measurements and the SINS-predicted satellite range differences model are given. The proposed algorithm calculates the moving average of the residuals between the SINS-predicted satellite range double differences and the measured GNSS carrier phase double differences. The primary criterion for spoofing detection is the specified threshold excess of the moving average of the double difference residuals. Experimental studies are performed using simulation and hardware-in-the-loop simulation. The experimental results allow us to evaluate the efficiency of the proposed approach and estimate the potential characteristics of the spoofing detection algorithm based on it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
期刊最新文献
PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis Aircraft Innovation Trends Enabling Advanced Air Mobility The Effect of Individual Hydrocarbons in the Composition of Diesel Fuel on the Effectiveness of Depressant Additives A Review of Available Solutions for Implementation of Small–Medium Combined Heat and Power (CHP) Systems Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1