构建模糊图像的算法和软件工具的特点

R. Yarkun, Y. Paramud
{"title":"构建模糊图像的算法和软件工具的特点","authors":"R. Yarkun, Y. Paramud","doi":"10.23939/csn2023.01.172","DOIUrl":null,"url":null,"abstract":"Abstract: This article examines the features of algorithmic and software tools for processing fuzzy images. The work uses three filters: CIGaussianBlur, CIUnsharpMask and CIBlendWithAlphaMask. The described filters allow you to improve image quality, reduce noise and reproduce details.The initial task is to process the blurring of images. For this, the CIGaussianBlur filter is used, which applies a Gaussian blur to the image. This blur reduces high-frequency noise and adds smoothness to the contours of objects.The second filter, CIUnsharpMask, is used to restore image details. This filter subtracts the blurred version from the original image, which allows you to highlight important details and increase the clarity of the image. The last filter, CIBlendWithAlphaMask, is used to blend two images using an alpha mask. This filter allows you to control the transparency and adjust how the images are blended. As a result, a more realistic and aesthetic image can be achieved. The article considers the principles of operation of each of the filters, gives examples of their use and describes the results obtained. Research shows that using these filters can improve the quality of blurry images, reduce noise, and sharpen details. The results of this work can be useful for use in the field of image processing, computer vision and graphic design. Using the described filters can help improve the visual characteristics of images and provide a more accurate interpretation of fuzzy data. Keywords: fuzzy images, algorithmic tools, software tools, image processing, filters.","PeriodicalId":233546,"journal":{"name":"Computer systems and network","volume":"63 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EATURES OF ALGORITHMIC AND SOFTWARE TOOLS FOR FRAMING FUZZY IMAGES\",\"authors\":\"R. Yarkun, Y. Paramud\",\"doi\":\"10.23939/csn2023.01.172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: This article examines the features of algorithmic and software tools for processing fuzzy images. The work uses three filters: CIGaussianBlur, CIUnsharpMask and CIBlendWithAlphaMask. The described filters allow you to improve image quality, reduce noise and reproduce details.The initial task is to process the blurring of images. For this, the CIGaussianBlur filter is used, which applies a Gaussian blur to the image. This blur reduces high-frequency noise and adds smoothness to the contours of objects.The second filter, CIUnsharpMask, is used to restore image details. This filter subtracts the blurred version from the original image, which allows you to highlight important details and increase the clarity of the image. The last filter, CIBlendWithAlphaMask, is used to blend two images using an alpha mask. This filter allows you to control the transparency and adjust how the images are blended. As a result, a more realistic and aesthetic image can be achieved. The article considers the principles of operation of each of the filters, gives examples of their use and describes the results obtained. Research shows that using these filters can improve the quality of blurry images, reduce noise, and sharpen details. The results of this work can be useful for use in the field of image processing, computer vision and graphic design. Using the described filters can help improve the visual characteristics of images and provide a more accurate interpretation of fuzzy data. Keywords: fuzzy images, algorithmic tools, software tools, image processing, filters.\",\"PeriodicalId\":233546,\"journal\":{\"name\":\"Computer systems and network\",\"volume\":\"63 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer systems and network\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/csn2023.01.172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer systems and network","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/csn2023.01.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文研究了处理模糊图像的算法和软件工具的特点。这项工作使用了三种滤波器:CIGaussianBlur、CIUnsharpMask 和 CIBlendWithAlphaMask。所述滤镜可以提高图像质量、减少噪点和再现细节。最初的任务是处理图像的模糊。为此,我们使用了 CIGaussianBlur(高斯模糊)滤镜,它可以对图像进行高斯模糊处理。第二个滤波器 CIUnsharpMask 用于恢复图像细节。第二个滤镜是 CIUnsharpMask,用于还原图像细节。该滤镜会从原始图像中减去模糊版本,从而突出重要细节,提高图像清晰度。最后一个滤镜是 CIBlendWithAlphaMask,用于使用 Alpha 遮罩混合两幅图像。通过该滤镜,您可以控制透明度并调整图像的混合方式。因此,可以获得更逼真、更美观的图像。文章介绍了每种滤镜的工作原理,举例说明了它们的使用方法,并描述了获得的效果。研究表明,使用这些滤镜可以改善模糊图像的质量,减少噪点,锐化细节。这项工作的成果可用于图像处理、计算机视觉和图形设计领域。使用所描述的滤波器有助于改善图像的视觉特性,并提供更准确的模糊数据解释。关键词:模糊图像、算法工具、软件工具、图像处理、滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EATURES OF ALGORITHMIC AND SOFTWARE TOOLS FOR FRAMING FUZZY IMAGES
Abstract: This article examines the features of algorithmic and software tools for processing fuzzy images. The work uses three filters: CIGaussianBlur, CIUnsharpMask and CIBlendWithAlphaMask. The described filters allow you to improve image quality, reduce noise and reproduce details.The initial task is to process the blurring of images. For this, the CIGaussianBlur filter is used, which applies a Gaussian blur to the image. This blur reduces high-frequency noise and adds smoothness to the contours of objects.The second filter, CIUnsharpMask, is used to restore image details. This filter subtracts the blurred version from the original image, which allows you to highlight important details and increase the clarity of the image. The last filter, CIBlendWithAlphaMask, is used to blend two images using an alpha mask. This filter allows you to control the transparency and adjust how the images are blended. As a result, a more realistic and aesthetic image can be achieved. The article considers the principles of operation of each of the filters, gives examples of their use and describes the results obtained. Research shows that using these filters can improve the quality of blurry images, reduce noise, and sharpen details. The results of this work can be useful for use in the field of image processing, computer vision and graphic design. Using the described filters can help improve the visual characteristics of images and provide a more accurate interpretation of fuzzy data. Keywords: fuzzy images, algorithmic tools, software tools, image processing, filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DEVICE FOR CONTROLLING PARAMETERS OF ACCUMULATOR BATTERIES AND THE CORRESPONDING DIRECT CURRENT NETWORK AUTONOMOUS DECENTRALIZED COMPUTER NETWORK MONITORING SYSTEM BASED ON SOFTWARE AGENTS METHODS AND ALGORITHMS OF COMPLEXING IMAGES AND THERMAL SIGNALS MODELING THE INFLUENCE OF COMPONENTS LEAKAGE CURRENTS ON THE ACCURACY OF THE RECURRENT LADCS A COMPUTERIZED ENERGY MANAGEMENT SYSTEM FOR A SMART HOME
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1