P. Ollus, Scott Allan, James R Harrison, Andrew R Jackson, T. Kurki-Suonio, K. G. McClements, Clive A Michael, David Moulton, B. Patel, Michael Robson, A. Snicker, J. Varje, Charles Vincent
{"title":"验证 MAST 升级中的束离子电荷交换模拟","authors":"P. Ollus, Scott Allan, James R Harrison, Andrew R Jackson, T. Kurki-Suonio, K. G. McClements, Clive A Michael, David Moulton, B. Patel, Michael Robson, A. Snicker, J. Varje, Charles Vincent","doi":"10.1088/1361-6587/ad15ed","DOIUrl":null,"url":null,"abstract":"\n Simulation of the impact of charge-exchange (CX) reactions on beam ions in the MAST Upgrade spherical tokamak was compared to measurements carried out with a fission chamber (neutron fluxes) and a Fast Ion Deuterium-Alpha (FIDA) diagnostic. A simple model was developed to reconstruct the outer-midplane neutral density based on measurements of deuterium-alpha emission from edge neutrals, and on Thomson scattering measurements of electron density and temperature. The main computational tools used were the ASCOT orbit-following code and the FIDASIM code for producing synthetic FIDA signals. The neutral density reconstruction agrees qualitatively with SOLPS-ITER modelling and yields a synthetic passive FIDA signal that is consistent with measurement. When CX losses of beam ions are accounted for, predicted neutron emission rates are quantitatively more consistent with measurement. It was necessary to account for CX losses of beam ions in simulations to reproduce the measured passive FIDA signal quantitatively and qualitatively. The results suggest that the neutral density reconstruction is a good approximation, that CX with edge neutrals causes significant beam-ion losses in MAST Upgrade, typically 20% of beam power, and that the ASCOT fast-ion CX model can be used to accurately predict the redistribution and loss of beam ions due to CX.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"23 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validating the simulation of beam-ion charge exchange in MAST Upgrade\",\"authors\":\"P. Ollus, Scott Allan, James R Harrison, Andrew R Jackson, T. Kurki-Suonio, K. G. McClements, Clive A Michael, David Moulton, B. Patel, Michael Robson, A. Snicker, J. Varje, Charles Vincent\",\"doi\":\"10.1088/1361-6587/ad15ed\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Simulation of the impact of charge-exchange (CX) reactions on beam ions in the MAST Upgrade spherical tokamak was compared to measurements carried out with a fission chamber (neutron fluxes) and a Fast Ion Deuterium-Alpha (FIDA) diagnostic. A simple model was developed to reconstruct the outer-midplane neutral density based on measurements of deuterium-alpha emission from edge neutrals, and on Thomson scattering measurements of electron density and temperature. The main computational tools used were the ASCOT orbit-following code and the FIDASIM code for producing synthetic FIDA signals. The neutral density reconstruction agrees qualitatively with SOLPS-ITER modelling and yields a synthetic passive FIDA signal that is consistent with measurement. When CX losses of beam ions are accounted for, predicted neutron emission rates are quantitatively more consistent with measurement. It was necessary to account for CX losses of beam ions in simulations to reproduce the measured passive FIDA signal quantitatively and qualitatively. The results suggest that the neutral density reconstruction is a good approximation, that CX with edge neutrals causes significant beam-ion losses in MAST Upgrade, typically 20% of beam power, and that the ASCOT fast-ion CX model can be used to accurately predict the redistribution and loss of beam ions due to CX.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad15ed\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad15ed","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Validating the simulation of beam-ion charge exchange in MAST Upgrade
Simulation of the impact of charge-exchange (CX) reactions on beam ions in the MAST Upgrade spherical tokamak was compared to measurements carried out with a fission chamber (neutron fluxes) and a Fast Ion Deuterium-Alpha (FIDA) diagnostic. A simple model was developed to reconstruct the outer-midplane neutral density based on measurements of deuterium-alpha emission from edge neutrals, and on Thomson scattering measurements of electron density and temperature. The main computational tools used were the ASCOT orbit-following code and the FIDASIM code for producing synthetic FIDA signals. The neutral density reconstruction agrees qualitatively with SOLPS-ITER modelling and yields a synthetic passive FIDA signal that is consistent with measurement. When CX losses of beam ions are accounted for, predicted neutron emission rates are quantitatively more consistent with measurement. It was necessary to account for CX losses of beam ions in simulations to reproduce the measured passive FIDA signal quantitatively and qualitatively. The results suggest that the neutral density reconstruction is a good approximation, that CX with edge neutrals causes significant beam-ion losses in MAST Upgrade, typically 20% of beam power, and that the ASCOT fast-ion CX model can be used to accurately predict the redistribution and loss of beam ions due to CX.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.