Alexandra E. Pye, K. Hodges, Todd A. Ehlers, M. V. van Soest, Christopher S. McDonald, Basant Bhandari
{"title":"尼泊尔中部卡利甘达基大喜马拉雅山层序掘起史的构建","authors":"Alexandra E. Pye, K. Hodges, Todd A. Ehlers, M. V. van Soest, Christopher S. McDonald, Basant Bhandari","doi":"10.1144/jgs2023-100","DOIUrl":null,"url":null,"abstract":"Understanding how the South Tibetan Detachment System (STDS) evolved through time and space is necessary for understanding the evolution of the Himalayan orogen. We present new (with previously published) thermochronologic results from a transect in the footwall and ductile shear zone of the basal structure of the STDS in the Kali Gandaki region: the Annapurna detachment. The exhumation history is interpreted from observations using 1D thermal-kinematic models that invert for the exhumation rate of samples. Recently published data suggested that high-temperature slip on the detachment persisted until at least ca. 12 Ma, more recently than is commonly assumed for STDS deformation. Our new data and modelling support those findings and suggest that the cessation of slip coincided with a dramatic, > 50% decrease in the exhumation rate of the shear zone and its footwall at ca. 12-10 Ma. Exhumation rates remained low until ca. 3 Ma, after which they increased to levels comparable with those that characterised STDS activity. Plausible causes of this late pulse of exhumation include an intensification of the Asian Winter monsoon and establishment of today's Indian Summer Monsoon, glaciation, and/or an internal structural reorganisation of the Himalayan orogenic wedge driving localised rock uplift in the hinterland.\n \n Supplementary material:\n https://doi.org/10.6084/m9.figshare.c.6949467\n","PeriodicalId":17320,"journal":{"name":"Journal of the Geological Society","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining the exhumation history of the Greater Himalayan sequence, Kali Gandaki, Central Nepal\",\"authors\":\"Alexandra E. Pye, K. Hodges, Todd A. Ehlers, M. V. van Soest, Christopher S. McDonald, Basant Bhandari\",\"doi\":\"10.1144/jgs2023-100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how the South Tibetan Detachment System (STDS) evolved through time and space is necessary for understanding the evolution of the Himalayan orogen. We present new (with previously published) thermochronologic results from a transect in the footwall and ductile shear zone of the basal structure of the STDS in the Kali Gandaki region: the Annapurna detachment. The exhumation history is interpreted from observations using 1D thermal-kinematic models that invert for the exhumation rate of samples. Recently published data suggested that high-temperature slip on the detachment persisted until at least ca. 12 Ma, more recently than is commonly assumed for STDS deformation. Our new data and modelling support those findings and suggest that the cessation of slip coincided with a dramatic, > 50% decrease in the exhumation rate of the shear zone and its footwall at ca. 12-10 Ma. Exhumation rates remained low until ca. 3 Ma, after which they increased to levels comparable with those that characterised STDS activity. Plausible causes of this late pulse of exhumation include an intensification of the Asian Winter monsoon and establishment of today's Indian Summer Monsoon, glaciation, and/or an internal structural reorganisation of the Himalayan orogenic wedge driving localised rock uplift in the hinterland.\\n \\n Supplementary material:\\n https://doi.org/10.6084/m9.figshare.c.6949467\\n\",\"PeriodicalId\":17320,\"journal\":{\"name\":\"Journal of the Geological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Geological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/jgs2023-100\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Geological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/jgs2023-100","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Constraining the exhumation history of the Greater Himalayan sequence, Kali Gandaki, Central Nepal
Understanding how the South Tibetan Detachment System (STDS) evolved through time and space is necessary for understanding the evolution of the Himalayan orogen. We present new (with previously published) thermochronologic results from a transect in the footwall and ductile shear zone of the basal structure of the STDS in the Kali Gandaki region: the Annapurna detachment. The exhumation history is interpreted from observations using 1D thermal-kinematic models that invert for the exhumation rate of samples. Recently published data suggested that high-temperature slip on the detachment persisted until at least ca. 12 Ma, more recently than is commonly assumed for STDS deformation. Our new data and modelling support those findings and suggest that the cessation of slip coincided with a dramatic, > 50% decrease in the exhumation rate of the shear zone and its footwall at ca. 12-10 Ma. Exhumation rates remained low until ca. 3 Ma, after which they increased to levels comparable with those that characterised STDS activity. Plausible causes of this late pulse of exhumation include an intensification of the Asian Winter monsoon and establishment of today's Indian Summer Monsoon, glaciation, and/or an internal structural reorganisation of the Himalayan orogenic wedge driving localised rock uplift in the hinterland.
Supplementary material:
https://doi.org/10.6084/m9.figshare.c.6949467
期刊介绍:
Journal of the Geological Society (JGS) is owned and published by the Geological Society of London.
JGS publishes topical, high-quality recent research across the full range of Earth Sciences. Papers are interdisciplinary in nature and emphasize the development of an understanding of fundamental geological processes. Broad interest articles that refer to regional studies, but which extend beyond their geographical context are also welcomed.
Each year JGS presents the ‘JGS Early Career Award'' for papers published in the journal, which rewards the writing of well-written, exciting papers from early career geologists.
The journal publishes research and invited review articles, discussion papers and thematic sets.