{"title":"用不同结构类型的胶结土加固软粘土中的锚固板桩码头的行为","authors":"Shengyuan Chen, Yunfei Guan, Jiqun Dai, Xun Han","doi":"10.1139/cgj-2023-0158","DOIUrl":null,"url":null,"abstract":"In this research, the potential benefits of using various structural types of cemented soil, including block-type, column-type, and wall-type, to reinforce the active zone behind a quay wall were investigated by experimental and numerical methods. The response of the quay wall and ground was analysed from aspects of soil movement, quay wall displacement, lateral earth pressure, and bending moment, and a close agreement between the experimental and numerical results was observed. Experimental and numerical results showed that the cemented soil effectively prevented potential deep soil sliding, and then lateral displacement of the quay wall and ground deformation was reduced. Among various structural patterns, the case with the block-type cemented soil exhibited smaller lateral earth pressure on the quay wall, while the case with the wall-type cemented soil more effectively reduced the bending moments and lateral displacements of the quay wall; therefore, wall-type cemented soil seems to be more favourable considering their improved performance under the same load intensities and excavation depth. This research provides a hint and guideline for the preliminary design of cemented soil-stabilised sheet pile quay structures in soft clay based on the lateral load-reduction effect of the varying structural types of the cemented soil.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"14 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of an anchored sheet pile quay in soft clay reinforced by various structural types of cemented soil\",\"authors\":\"Shengyuan Chen, Yunfei Guan, Jiqun Dai, Xun Han\",\"doi\":\"10.1139/cgj-2023-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the potential benefits of using various structural types of cemented soil, including block-type, column-type, and wall-type, to reinforce the active zone behind a quay wall were investigated by experimental and numerical methods. The response of the quay wall and ground was analysed from aspects of soil movement, quay wall displacement, lateral earth pressure, and bending moment, and a close agreement between the experimental and numerical results was observed. Experimental and numerical results showed that the cemented soil effectively prevented potential deep soil sliding, and then lateral displacement of the quay wall and ground deformation was reduced. Among various structural patterns, the case with the block-type cemented soil exhibited smaller lateral earth pressure on the quay wall, while the case with the wall-type cemented soil more effectively reduced the bending moments and lateral displacements of the quay wall; therefore, wall-type cemented soil seems to be more favourable considering their improved performance under the same load intensities and excavation depth. This research provides a hint and guideline for the preliminary design of cemented soil-stabilised sheet pile quay structures in soft clay based on the lateral load-reduction effect of the varying structural types of the cemented soil.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"14 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0158\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0158","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Behavior of an anchored sheet pile quay in soft clay reinforced by various structural types of cemented soil
In this research, the potential benefits of using various structural types of cemented soil, including block-type, column-type, and wall-type, to reinforce the active zone behind a quay wall were investigated by experimental and numerical methods. The response of the quay wall and ground was analysed from aspects of soil movement, quay wall displacement, lateral earth pressure, and bending moment, and a close agreement between the experimental and numerical results was observed. Experimental and numerical results showed that the cemented soil effectively prevented potential deep soil sliding, and then lateral displacement of the quay wall and ground deformation was reduced. Among various structural patterns, the case with the block-type cemented soil exhibited smaller lateral earth pressure on the quay wall, while the case with the wall-type cemented soil more effectively reduced the bending moments and lateral displacements of the quay wall; therefore, wall-type cemented soil seems to be more favourable considering their improved performance under the same load intensities and excavation depth. This research provides a hint and guideline for the preliminary design of cemented soil-stabilised sheet pile quay structures in soft clay based on the lateral load-reduction effect of the varying structural types of the cemented soil.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.