通过径向基函数和深度卷积神经网络集成改进降雨预报

IF 0.7 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Climate Change Pub Date : 2023-12-11 DOI:10.3233/jcc230030
J. Hemalatha, V. Vivek, M. Sekar, M.K. Kavitha Devi
{"title":"通过径向基函数和深度卷积神经网络集成改进降雨预报","authors":"J. Hemalatha, V. Vivek, M. Sekar, M.K. Kavitha Devi","doi":"10.3233/jcc230030","DOIUrl":null,"url":null,"abstract":"The foremost challenge of rainfall forecasting is the intensity of rainfall in some particular stations. The unpredictable rainfall volume owing to the climate transformation can root cause for either overflow or dryness in the reservoir. In this article, we coin a novel model to predict the monthly rainfall by using an Ensemble Radial basis function Network and a One-Dimensional Deep Convolutional Neural Network algorithm. In the first step, nine climatological parameters, which are highly related to monthly rainfall disparity, are given as input for an ensemble model. In the second step, a hybrid approach is proposed and compared with Bayesian Linear Regression (BLR) and Decision Forest Regression (DFR). Experimental results show that the ensemble approach yields good results in seizing the multifaceted association among causal variables and also it extracted the most relevant hidden features of hydro meteorological rainfall system.","PeriodicalId":43177,"journal":{"name":"Journal of Climate Change","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Rainfall Forecasting via Radial Basis Function and Deep Convolutional Neural Networks Integration\",\"authors\":\"J. Hemalatha, V. Vivek, M. Sekar, M.K. Kavitha Devi\",\"doi\":\"10.3233/jcc230030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The foremost challenge of rainfall forecasting is the intensity of rainfall in some particular stations. The unpredictable rainfall volume owing to the climate transformation can root cause for either overflow or dryness in the reservoir. In this article, we coin a novel model to predict the monthly rainfall by using an Ensemble Radial basis function Network and a One-Dimensional Deep Convolutional Neural Network algorithm. In the first step, nine climatological parameters, which are highly related to monthly rainfall disparity, are given as input for an ensemble model. In the second step, a hybrid approach is proposed and compared with Bayesian Linear Regression (BLR) and Decision Forest Regression (DFR). Experimental results show that the ensemble approach yields good results in seizing the multifaceted association among causal variables and also it extracted the most relevant hidden features of hydro meteorological rainfall system.\",\"PeriodicalId\":43177,\"journal\":{\"name\":\"Journal of Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcc230030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcc230030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

降雨预报的首要挑战是某些特定站点的降雨强度。气候转变导致的不可预测的降雨量是水库溢洪或干涸的根本原因。在本文中,我们利用集合径向基函数网络和一维深度卷积神经网络算法,建立了一个预测月降雨量的新模型。第一步,将与月降雨量差异高度相关的九个气候参数作为集合模型的输入。第二步,提出了一种混合方法,并与贝叶斯线性回归(BLR)和决策森林回归(DFR)进行了比较。实验结果表明,该集合方法在抓住因果变量之间的多方面关联方面取得了良好的效果,而且还提取出了水文气象降雨系统中最相关的隐藏特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Rainfall Forecasting via Radial Basis Function and Deep Convolutional Neural Networks Integration
The foremost challenge of rainfall forecasting is the intensity of rainfall in some particular stations. The unpredictable rainfall volume owing to the climate transformation can root cause for either overflow or dryness in the reservoir. In this article, we coin a novel model to predict the monthly rainfall by using an Ensemble Radial basis function Network and a One-Dimensional Deep Convolutional Neural Network algorithm. In the first step, nine climatological parameters, which are highly related to monthly rainfall disparity, are given as input for an ensemble model. In the second step, a hybrid approach is proposed and compared with Bayesian Linear Regression (BLR) and Decision Forest Regression (DFR). Experimental results show that the ensemble approach yields good results in seizing the multifaceted association among causal variables and also it extracted the most relevant hidden features of hydro meteorological rainfall system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Climate Change
Journal of Climate Change METEOROLOGY & ATMOSPHERIC SCIENCES-
自引率
16.70%
发文量
18
期刊最新文献
Review on Climate Smart Agriculture Practice: A Global Perspective Disruption in Agricultural Pattern Due to Unpredictable Weather Conditions and its Effect on Farmer’s Family of Kishanganj District of Bihar Synergising Simulated Annealing and Generative Adversarial Network for Enhanced Wind Data Imputation in Climate Change Modelling Advancing Flood Risk Assessment through Integrated Hazard Mapping: A Google Earth Engine-Based Approach for Comprehensive Scientific Analysis and Decision Support Trend Analysis of Maximum and Minimum Temperature in Can Tho City, Viet Nam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1