SAPO-34 沸石膜的合成:二氧化硅来源的影响

T. L. Barbosa, M. Rodrigues
{"title":"SAPO-34 沸石膜的合成:二氧化硅来源的影响","authors":"T. L. Barbosa, M. Rodrigues","doi":"10.21926/cr.2304030","DOIUrl":null,"url":null,"abstract":"The research described the production and characterization of various materials, particularly alpha-alumina ceramic supports, zeolite SAPO-34, and zeolite membranes. Ceramic supports were manufactured through dry uniaxial compaction. Sintering of the supports was carried out at 1300°C for 2 h. SAPO-34 zeolites and zeolite membranes were synthesized through a hydrothermal process involving two steps: a first step at 38°C for 24 h and a second step at 200°C for 24 h. The research aimed to determine how different silica sources, namely Aerosil 380, colloidal silica, and TEOS, influenced the outcome of the synthesis. The study identified that Aerosil 380 silica was the most suitable source for synthesizing SAPO-34 zeolites and membranes. Zeolite membranes (SAPO-34/alpha-alumina) displayed a uniform and homogeneous distribution of SAPO-34 phase zeolitic crystals. The absence of defects or cracks in these membranes confirmed the successful formation of the SAPO-34 zeolite membrane structure. This research has significant implications, particularly in materials science and applications utilizing zeolites and membranes. The choice of silica source plays a crucial role in determining the quality and properties of the synthesized materials, and the detailed characterization provides valuable insights into their performance in practical applications. Overall, the research contributes to the understanding and optimization of zeolite synthesis processes.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"26 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica\",\"authors\":\"T. L. Barbosa, M. Rodrigues\",\"doi\":\"10.21926/cr.2304030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research described the production and characterization of various materials, particularly alpha-alumina ceramic supports, zeolite SAPO-34, and zeolite membranes. Ceramic supports were manufactured through dry uniaxial compaction. Sintering of the supports was carried out at 1300°C for 2 h. SAPO-34 zeolites and zeolite membranes were synthesized through a hydrothermal process involving two steps: a first step at 38°C for 24 h and a second step at 200°C for 24 h. The research aimed to determine how different silica sources, namely Aerosil 380, colloidal silica, and TEOS, influenced the outcome of the synthesis. The study identified that Aerosil 380 silica was the most suitable source for synthesizing SAPO-34 zeolites and membranes. Zeolite membranes (SAPO-34/alpha-alumina) displayed a uniform and homogeneous distribution of SAPO-34 phase zeolitic crystals. The absence of defects or cracks in these membranes confirmed the successful formation of the SAPO-34 zeolite membrane structure. This research has significant implications, particularly in materials science and applications utilizing zeolites and membranes. The choice of silica source plays a crucial role in determining the quality and properties of the synthesized materials, and the detailed characterization provides valuable insights into their performance in practical applications. Overall, the research contributes to the understanding and optimization of zeolite synthesis processes.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2304030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2304030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究描述了各种材料的生产和特性,特别是阿尔法氧化铝陶瓷支架、沸石 SAPO-34 和沸石膜。陶瓷支架是通过干法单轴压制制造的。SAPO-34 沸石和沸石膜是通过水热工艺合成的,包括两个步骤:第一步在 38°C 下进行 24 小时,第二步在 200°C 下进行 24 小时。研究发现,Aerosil 380 二氧化硅是合成 SAPO-34 沸石和膜的最合适来源。沸石膜(SAPO-34/α-氧化铝)显示出均匀一致的 SAPO-34 相沸石晶体分布。这些膜中没有缺陷或裂缝,证实了 SAPO-34 沸石膜结构的成功形成。这项研究具有重要意义,特别是在材料科学和利用沸石和膜的应用领域。硅源的选择在决定合成材料的质量和性能方面起着至关重要的作用,而详细的表征则为它们在实际应用中的性能提供了宝贵的见解。总之,这项研究有助于理解和优化沸石合成工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica
The research described the production and characterization of various materials, particularly alpha-alumina ceramic supports, zeolite SAPO-34, and zeolite membranes. Ceramic supports were manufactured through dry uniaxial compaction. Sintering of the supports was carried out at 1300°C for 2 h. SAPO-34 zeolites and zeolite membranes were synthesized through a hydrothermal process involving two steps: a first step at 38°C for 24 h and a second step at 200°C for 24 h. The research aimed to determine how different silica sources, namely Aerosil 380, colloidal silica, and TEOS, influenced the outcome of the synthesis. The study identified that Aerosil 380 silica was the most suitable source for synthesizing SAPO-34 zeolites and membranes. Zeolite membranes (SAPO-34/alpha-alumina) displayed a uniform and homogeneous distribution of SAPO-34 phase zeolitic crystals. The absence of defects or cracks in these membranes confirmed the successful formation of the SAPO-34 zeolite membrane structure. This research has significant implications, particularly in materials science and applications utilizing zeolites and membranes. The choice of silica source plays a crucial role in determining the quality and properties of the synthesized materials, and the detailed characterization provides valuable insights into their performance in practical applications. Overall, the research contributes to the understanding and optimization of zeolite synthesis processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effective Photogeneration of Singlet Oxygen and High Photocatalytic and Antibacterial Activities of Porous Mn-Doped ZnO-ZrO2 Nanocomposites Determination of Reflectance Spectra and Colorimetry of Titanium and Tungsten Oxides Obtained by Microwave-assisted Hydrothermal Synthesis A Remarkable Pt Doped CNT Catalyst as a Double Functional Material: Its Application for Hydrogen Production and Supercapacitor NaY Zeolite Synthesis from Vermiculite and Modification with Surfactant Synthesis of SAPO-34 Zeolite Membrane: Influence of Sources of Silica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1