{"title":"层状铁榴石结构的生长和微波特性","authors":"S. Yushchuk, S.O. Yur`ev, V. Moklyak","doi":"10.15330/pcss.24.4.656-661","DOIUrl":null,"url":null,"abstract":"The ferrogarnet structures consisting from one- to three- layers of monocrystalline yttrium-iron garnet Y3Fe5O12 (YIG) films, two- layered YIG - La,Ga:YIG and two- layered {Y,Sm,Lu}3(Fe,Ga)5O12 -YIG structures were grown by liquid-phase epitaxy (LPE) method on gadolinium - gallium garnet Gd3Ga5O12 (GGG) substrates of (111) orientation. The obtained layered ferrogarnet structures were studied by the methods of ferromagnetic resonance (FMR) and magnetostatic wave (MSW) interference. The two- and three- layered YIG structures have a wide FMR line width (∆H). For the three- layered YIG structures with the total thickness of 68-102 μm ∆H = 5,7- 11,5 Oe. The line width ∆H = 0,34 – 1,22 Oe correspond to the two- layered (Y,Sm,La)3(Fe,Ga)5O12 – YIG structures with thicknesses from 3 to 65 μm. Individual layers in all structures are characterized by similar or different saturation magnetizations (4πMs).The frequency MSW separation in the YIG - La,Ga:YIG layered structure was observed. It was shown that the propagation losses of MSW in one- and two- layered structures increase with decreasing wavelength of MSW and transition to a two- layered structure.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"23 12","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth and microwave properties of layered ferrogarnet structures\",\"authors\":\"S. Yushchuk, S.O. Yur`ev, V. Moklyak\",\"doi\":\"10.15330/pcss.24.4.656-661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ferrogarnet structures consisting from one- to three- layers of monocrystalline yttrium-iron garnet Y3Fe5O12 (YIG) films, two- layered YIG - La,Ga:YIG and two- layered {Y,Sm,Lu}3(Fe,Ga)5O12 -YIG structures were grown by liquid-phase epitaxy (LPE) method on gadolinium - gallium garnet Gd3Ga5O12 (GGG) substrates of (111) orientation. The obtained layered ferrogarnet structures were studied by the methods of ferromagnetic resonance (FMR) and magnetostatic wave (MSW) interference. The two- and three- layered YIG structures have a wide FMR line width (∆H). For the three- layered YIG structures with the total thickness of 68-102 μm ∆H = 5,7- 11,5 Oe. The line width ∆H = 0,34 – 1,22 Oe correspond to the two- layered (Y,Sm,La)3(Fe,Ga)5O12 – YIG structures with thicknesses from 3 to 65 μm. Individual layers in all structures are characterized by similar or different saturation magnetizations (4πMs).The frequency MSW separation in the YIG - La,Ga:YIG layered structure was observed. It was shown that the propagation losses of MSW in one- and two- layered structures increase with decreasing wavelength of MSW and transition to a two- layered structure.\",\"PeriodicalId\":20137,\"journal\":{\"name\":\"Physics and Chemistry of Solid State\",\"volume\":\"23 12\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Solid State\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/pcss.24.4.656-661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.4.656-661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Growth and microwave properties of layered ferrogarnet structures
The ferrogarnet structures consisting from one- to three- layers of monocrystalline yttrium-iron garnet Y3Fe5O12 (YIG) films, two- layered YIG - La,Ga:YIG and two- layered {Y,Sm,Lu}3(Fe,Ga)5O12 -YIG structures were grown by liquid-phase epitaxy (LPE) method on gadolinium - gallium garnet Gd3Ga5O12 (GGG) substrates of (111) orientation. The obtained layered ferrogarnet structures were studied by the methods of ferromagnetic resonance (FMR) and magnetostatic wave (MSW) interference. The two- and three- layered YIG structures have a wide FMR line width (∆H). For the three- layered YIG structures with the total thickness of 68-102 μm ∆H = 5,7- 11,5 Oe. The line width ∆H = 0,34 – 1,22 Oe correspond to the two- layered (Y,Sm,La)3(Fe,Ga)5O12 – YIG structures with thicknesses from 3 to 65 μm. Individual layers in all structures are characterized by similar or different saturation magnetizations (4πMs).The frequency MSW separation in the YIG - La,Ga:YIG layered structure was observed. It was shown that the propagation losses of MSW in one- and two- layered structures increase with decreasing wavelength of MSW and transition to a two- layered structure.