{"title":"采用分层聚类方法对印度南部流域的流量持续时间曲线进行区域化分析","authors":"C. G. Hiremath, L. Nandagiri","doi":"10.2166/wcc.2023.467","DOIUrl":null,"url":null,"abstract":"\n \n The present study on the hydrologic regionalization was taken up to evaluate the utility of hierarchical cluster analysis for the delineation of hydrologically homogeneous regions and multiple linear regression (MLR) models for information transfer to derive flow duration curve (FDC) in ungauged basins. For this purpose, 50 catchments with largely unregulated flows located in South India were identified and a dataset of historical streamflow records and 16 catchment attributes was created. Using selected catchment attributes, three hydrologically homogenous regions were delineated using a hierarchical agglomerative cluster approach, and nine flow quantiles (10–90%) for each of the catchments in the respective clusters was derived. Regionalization approach was then adopted, whereby using step-wise regression, flow quantiles were related with readily derived basin-physical characteristics through MLR models. Cluster-wise performance analysis of the developed models indicated excellent performance with an average coefficient of determination (R2) values of 0.85, 0.97, and 0.8 for Cluster-1, -2, and -3, respectively, in comparison to poor performance when all 50 stations were considered to be in a single region. However, Jackknife cross-validation showed mixed performances with regard to the reliability of developed models with performance being good for high-flow quantiles and poor for low-flow quantiles.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"7 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regionalization of flow duration curves for catchments in southern India using a hierarchical cluster approach\",\"authors\":\"C. G. Hiremath, L. Nandagiri\",\"doi\":\"10.2166/wcc.2023.467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The present study on the hydrologic regionalization was taken up to evaluate the utility of hierarchical cluster analysis for the delineation of hydrologically homogeneous regions and multiple linear regression (MLR) models for information transfer to derive flow duration curve (FDC) in ungauged basins. For this purpose, 50 catchments with largely unregulated flows located in South India were identified and a dataset of historical streamflow records and 16 catchment attributes was created. Using selected catchment attributes, three hydrologically homogenous regions were delineated using a hierarchical agglomerative cluster approach, and nine flow quantiles (10–90%) for each of the catchments in the respective clusters was derived. Regionalization approach was then adopted, whereby using step-wise regression, flow quantiles were related with readily derived basin-physical characteristics through MLR models. Cluster-wise performance analysis of the developed models indicated excellent performance with an average coefficient of determination (R2) values of 0.85, 0.97, and 0.8 for Cluster-1, -2, and -3, respectively, in comparison to poor performance when all 50 stations were considered to be in a single region. However, Jackknife cross-validation showed mixed performances with regard to the reliability of developed models with performance being good for high-flow quantiles and poor for low-flow quantiles.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.467\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2023.467","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Regionalization of flow duration curves for catchments in southern India using a hierarchical cluster approach
The present study on the hydrologic regionalization was taken up to evaluate the utility of hierarchical cluster analysis for the delineation of hydrologically homogeneous regions and multiple linear regression (MLR) models for information transfer to derive flow duration curve (FDC) in ungauged basins. For this purpose, 50 catchments with largely unregulated flows located in South India were identified and a dataset of historical streamflow records and 16 catchment attributes was created. Using selected catchment attributes, three hydrologically homogenous regions were delineated using a hierarchical agglomerative cluster approach, and nine flow quantiles (10–90%) for each of the catchments in the respective clusters was derived. Regionalization approach was then adopted, whereby using step-wise regression, flow quantiles were related with readily derived basin-physical characteristics through MLR models. Cluster-wise performance analysis of the developed models indicated excellent performance with an average coefficient of determination (R2) values of 0.85, 0.97, and 0.8 for Cluster-1, -2, and -3, respectively, in comparison to poor performance when all 50 stations were considered to be in a single region. However, Jackknife cross-validation showed mixed performances with regard to the reliability of developed models with performance being good for high-flow quantiles and poor for low-flow quantiles.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.