气候变化下的洪水经济损失评估:越南河静省 Ngan Sau 河流域案例研究

IF 0.7 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Climate Change Pub Date : 2023-12-11 DOI:10.3233/jcc230028
Tran Quoc Lap
{"title":"气候变化下的洪水经济损失评估:越南河静省 Ngan Sau 河流域案例研究","authors":"Tran Quoc Lap","doi":"10.3233/jcc230028","DOIUrl":null,"url":null,"abstract":"The Ngan Sau River basin, which is situated in Ha Tinh Province of Vietnam, experiences flooding during the rainy season, resulting in significant loss of property and human life. This research aimed to investigate the impact of climate change and land-use variation on flood losses. The study began by simulating the heavy rainfall events in August 2007 using the Weather Research and Forecast model with an ensemble method. Future rainfall was examined through numerical simulation based on pseudo-global warming constructed using six CMIP5 models (MIROC-ESM, MRI-CGM3, GISS-E2-H, HadGEM2-ES, HadGEM2-ES, and CNRM-CM5), and the variation in land-use was obtained from local authorities. Inundations caused by rainfall in 2007 and rainfall in the future were determined by the rainfall-runoff-inundation model. Finally, based on flood maps, land-use, and flood depth-damage functions, the economic losses were computed. The results of the average flood economic loss were $380 million in CTL, whereas the local authorities report an estimated loss of over $300 million. Under the impact of climate change and land-use variation, economic losses ranged from $380 million to $526 million in six CMIP5 models. The result of INMCM4 showed the highest value of $526 million, the results of MRI-CGM3, GISS-E2-H, HadGEM2-ES, and CNRM-CM5 fluctuated around $500 million, and the MIROC-ESM recorded the lowest at $380 million. The damage maps showed that the losses would be highest in urban areas, followed by forest areas, and lowest in agricultural areas. This information is essential for decision-makers to improve solutions for preventing economic losses caused by floods.","PeriodicalId":43177,"journal":{"name":"Journal of Climate Change","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Flood Economic Losses Under Climate Change: A Case Study in the Ngan Sau River Basin, Ha Tinh Province and Vietnam\",\"authors\":\"Tran Quoc Lap\",\"doi\":\"10.3233/jcc230028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ngan Sau River basin, which is situated in Ha Tinh Province of Vietnam, experiences flooding during the rainy season, resulting in significant loss of property and human life. This research aimed to investigate the impact of climate change and land-use variation on flood losses. The study began by simulating the heavy rainfall events in August 2007 using the Weather Research and Forecast model with an ensemble method. Future rainfall was examined through numerical simulation based on pseudo-global warming constructed using six CMIP5 models (MIROC-ESM, MRI-CGM3, GISS-E2-H, HadGEM2-ES, HadGEM2-ES, and CNRM-CM5), and the variation in land-use was obtained from local authorities. Inundations caused by rainfall in 2007 and rainfall in the future were determined by the rainfall-runoff-inundation model. Finally, based on flood maps, land-use, and flood depth-damage functions, the economic losses were computed. The results of the average flood economic loss were $380 million in CTL, whereas the local authorities report an estimated loss of over $300 million. Under the impact of climate change and land-use variation, economic losses ranged from $380 million to $526 million in six CMIP5 models. The result of INMCM4 showed the highest value of $526 million, the results of MRI-CGM3, GISS-E2-H, HadGEM2-ES, and CNRM-CM5 fluctuated around $500 million, and the MIROC-ESM recorded the lowest at $380 million. The damage maps showed that the losses would be highest in urban areas, followed by forest areas, and lowest in agricultural areas. This information is essential for decision-makers to improve solutions for preventing economic losses caused by floods.\",\"PeriodicalId\":43177,\"journal\":{\"name\":\"Journal of Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcc230028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcc230028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

位于越南河静省的 Ngan Sau 河流域每逢雨季都会发生洪水,造成重大的财产和生命损失。本研究旨在调查气候变化和土地利用变化对洪水损失的影响。研究首先利用天气研究和预测模型,采用集合方法模拟了 2007 年 8 月的暴雨事件。通过使用六个 CMIP5 模型(MIROC-ESM、MRI-CGM3、GISS-E2-H、HadGEM2-ES、HadGEM2-ES 和 CNRM-CM5)构建的基于伪全球变暖的数值模拟,对未来降雨量进行了研究,并从地方当局获得了土地利用的变化情况。通过降雨-径流-洪水模型确定了 2007 年降雨和未来降雨造成的洪水。最后,根据洪水地图、土地利用和洪水深度-损害函数计算出经济损失。结果显示,CTL 的平均洪水经济损失为 3.8 亿美元,而地方当局报告的损失估计超过 3 亿美元。在气候变化和土地利用变化的影响下,六个 CMIP5 模型的经济损失从 3.8 亿美元到 5.26 亿美元不等。INMCM4 的结果显示最高值为 5.26 亿美元,MRI-CGM3、GISS-E2-H、HadGEM2-ES 和 CNRM-CM5 的结果在 5 亿美元上下浮动,MIROC-ESM 的结果最低,为 3.8 亿美元。损失地图显示,城市地区的损失最大,其次是森林地区,农业地区的损失最小。这些信息对于决策者改进预防洪灾造成经济损失的解决方案至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Flood Economic Losses Under Climate Change: A Case Study in the Ngan Sau River Basin, Ha Tinh Province and Vietnam
The Ngan Sau River basin, which is situated in Ha Tinh Province of Vietnam, experiences flooding during the rainy season, resulting in significant loss of property and human life. This research aimed to investigate the impact of climate change and land-use variation on flood losses. The study began by simulating the heavy rainfall events in August 2007 using the Weather Research and Forecast model with an ensemble method. Future rainfall was examined through numerical simulation based on pseudo-global warming constructed using six CMIP5 models (MIROC-ESM, MRI-CGM3, GISS-E2-H, HadGEM2-ES, HadGEM2-ES, and CNRM-CM5), and the variation in land-use was obtained from local authorities. Inundations caused by rainfall in 2007 and rainfall in the future were determined by the rainfall-runoff-inundation model. Finally, based on flood maps, land-use, and flood depth-damage functions, the economic losses were computed. The results of the average flood economic loss were $380 million in CTL, whereas the local authorities report an estimated loss of over $300 million. Under the impact of climate change and land-use variation, economic losses ranged from $380 million to $526 million in six CMIP5 models. The result of INMCM4 showed the highest value of $526 million, the results of MRI-CGM3, GISS-E2-H, HadGEM2-ES, and CNRM-CM5 fluctuated around $500 million, and the MIROC-ESM recorded the lowest at $380 million. The damage maps showed that the losses would be highest in urban areas, followed by forest areas, and lowest in agricultural areas. This information is essential for decision-makers to improve solutions for preventing economic losses caused by floods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Climate Change
Journal of Climate Change METEOROLOGY & ATMOSPHERIC SCIENCES-
自引率
16.70%
发文量
18
期刊最新文献
Review on Climate Smart Agriculture Practice: A Global Perspective Disruption in Agricultural Pattern Due to Unpredictable Weather Conditions and its Effect on Farmer’s Family of Kishanganj District of Bihar Synergising Simulated Annealing and Generative Adversarial Network for Enhanced Wind Data Imputation in Climate Change Modelling Advancing Flood Risk Assessment through Integrated Hazard Mapping: A Google Earth Engine-Based Approach for Comprehensive Scientific Analysis and Decision Support Trend Analysis of Maximum and Minimum Temperature in Can Tho City, Viet Nam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1