一种新颖的倒立摆分层递归非奇异终端滑模控制

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Actuators Pub Date : 2023-12-11 DOI:10.3390/act12120462
Hiep Dai Le, T. Nestorović
{"title":"一种新颖的倒立摆分层递归非奇异终端滑模控制","authors":"Hiep Dai Le, T. Nestorović","doi":"10.3390/act12120462","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a novel hierarchical recursive nonsingular terminal sliding mode controller (HRNTSMC), which is designed to stabilize the inverted pendulum (IP). In contrast to existing hierarchical sliding mode controllers (HSMC), the HRNTSMC significantly reduces the chattering problem in control input and improves the convergence speed of errors. In the HRNTSMC design, the IP system is first decoupled into pendulum and cart subsystems. Subsequently, a recursive nonsingular terminal sliding mode controller (RNTSMC) surface is devised for each subsystem to enhance the error convergence rate and attenuate chattering effects. Following this design, the HRNTSMC surface is constructed by the linear combination of the RNTSMC surfaces. Ultimately, the control law of the HRNTSMC is synthesized using the Lyapunov theorem to ensure that the system states converge to zero within a finite time. By invoking disturbances estimation, a linear extended state observer (LESO) is developed for the IP system. To validate the effectiveness, simulation results, including comparison with a conventional hierarchical sliding mode control (CHSMC) and a hierarchical nonsingular terminal sliding mode control (HNTSMC) are presented. These results clearly showcase the excellent performance of this approach, which is characterized by its strong robustness, fast convergence, high tracking accuracy, and reduced chattering in control input.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"79 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Hierarchical Recursive Nonsingular Terminal Sliding Mode Control for Inverted Pendulum\",\"authors\":\"Hiep Dai Le, T. Nestorović\",\"doi\":\"10.3390/act12120462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to develop a novel hierarchical recursive nonsingular terminal sliding mode controller (HRNTSMC), which is designed to stabilize the inverted pendulum (IP). In contrast to existing hierarchical sliding mode controllers (HSMC), the HRNTSMC significantly reduces the chattering problem in control input and improves the convergence speed of errors. In the HRNTSMC design, the IP system is first decoupled into pendulum and cart subsystems. Subsequently, a recursive nonsingular terminal sliding mode controller (RNTSMC) surface is devised for each subsystem to enhance the error convergence rate and attenuate chattering effects. Following this design, the HRNTSMC surface is constructed by the linear combination of the RNTSMC surfaces. Ultimately, the control law of the HRNTSMC is synthesized using the Lyapunov theorem to ensure that the system states converge to zero within a finite time. By invoking disturbances estimation, a linear extended state observer (LESO) is developed for the IP system. To validate the effectiveness, simulation results, including comparison with a conventional hierarchical sliding mode control (CHSMC) and a hierarchical nonsingular terminal sliding mode control (HNTSMC) are presented. These results clearly showcase the excellent performance of this approach, which is characterized by its strong robustness, fast convergence, high tracking accuracy, and reduced chattering in control input.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act12120462\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act12120462","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在开发一种新型分层递归非奇异末端滑动模式控制器(HRNTSMC),用于稳定倒立摆(IP)。与现有的分层滑模控制器(HSMC)相比,HRNTSMC 显著减少了控制输入的颤振问题,并提高了误差收敛速度。在 HRNTSMC 设计中,IP 系统首先解耦为摆锤子系统和小车子系统。随后,为每个子系统设计一个递归非奇异终端滑动模式控制器(RNTSMC)曲面,以提高误差收敛速度并减弱颤振效应。设计完成后,由 RNTSMC 表面的线性组合构建 HRNTSMC 表面。最后,利用 Lyapunov 定理合成 HRNTSMC 的控制法则,以确保系统状态在有限时间内收敛为零。通过引用干扰估计,为 IP 系统开发了线性扩展状态观测器(LESO)。为了验证其有效性,本文给出了仿真结果,包括与传统分层滑模控制(CHSMC)和分层非奇异终端滑模控制(HNTSMC)的比较。这些结果清楚地展示了这种方法的卓越性能,其特点是鲁棒性强、收敛速度快、跟踪精度高,并减少了控制输入的颤振。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Hierarchical Recursive Nonsingular Terminal Sliding Mode Control for Inverted Pendulum
This paper aims to develop a novel hierarchical recursive nonsingular terminal sliding mode controller (HRNTSMC), which is designed to stabilize the inverted pendulum (IP). In contrast to existing hierarchical sliding mode controllers (HSMC), the HRNTSMC significantly reduces the chattering problem in control input and improves the convergence speed of errors. In the HRNTSMC design, the IP system is first decoupled into pendulum and cart subsystems. Subsequently, a recursive nonsingular terminal sliding mode controller (RNTSMC) surface is devised for each subsystem to enhance the error convergence rate and attenuate chattering effects. Following this design, the HRNTSMC surface is constructed by the linear combination of the RNTSMC surfaces. Ultimately, the control law of the HRNTSMC is synthesized using the Lyapunov theorem to ensure that the system states converge to zero within a finite time. By invoking disturbances estimation, a linear extended state observer (LESO) is developed for the IP system. To validate the effectiveness, simulation results, including comparison with a conventional hierarchical sliding mode control (CHSMC) and a hierarchical nonsingular terminal sliding mode control (HNTSMC) are presented. These results clearly showcase the excellent performance of this approach, which is characterized by its strong robustness, fast convergence, high tracking accuracy, and reduced chattering in control input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
期刊最新文献
Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments Design and Control of a Reconfigurable Robot with Rolling and Flying Locomotion Dynamic Path Planning for Mobile Robots by Integrating Improved Sparrow Search Algorithm and Dynamic Window Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1