说说 Stata:找到分母:从百分比得出最小样本量

Nicholas J. Cox
{"title":"说说 Stata:找到分母:从百分比得出最小样本量","authors":"Nicholas J. Cox","doi":"10.1177/1536867x231212453","DOIUrl":null,"url":null,"abstract":"Percentage breakdowns for a series of classes or categories are sometimes reported without a specification of class frequencies or even the total sample size. This column surveys the problem of estimating the minimum sample size and class frequencies consistent with a reported breakdown and a particular resolution. I introduce and explain a new command, find_denom. Rounding quirks whereby a total is reported as above or below 100% are discussed as a complication.","PeriodicalId":437120,"journal":{"name":"The Stata Journal","volume":"111 ","pages":"1086 - 1095"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speaking Stata: Finding the denominator: Minimum sample size from percentages\",\"authors\":\"Nicholas J. Cox\",\"doi\":\"10.1177/1536867x231212453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Percentage breakdowns for a series of classes or categories are sometimes reported without a specification of class frequencies or even the total sample size. This column surveys the problem of estimating the minimum sample size and class frequencies consistent with a reported breakdown and a particular resolution. I introduce and explain a new command, find_denom. Rounding quirks whereby a total is reported as above or below 100% are discussed as a complication.\",\"PeriodicalId\":437120,\"journal\":{\"name\":\"The Stata Journal\",\"volume\":\"111 \",\"pages\":\"1086 - 1095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Stata Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x231212453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x231212453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有时,在报告一系列类别的百分比细目时,没有说明类别频率,甚至没有说明总样本量。本专栏将探讨如何估算与所报告的分类和特定分辨率相一致的最小样本量和类别频率。我将介绍并解释一个新命令 find_denom。本专栏还讨论了四舍五入的问题,即报告的总数高于或低于 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speaking Stata: Finding the denominator: Minimum sample size from percentages
Percentage breakdowns for a series of classes or categories are sometimes reported without a specification of class frequencies or even the total sample size. This column surveys the problem of estimating the minimum sample size and class frequencies consistent with a reported breakdown and a particular resolution. I introduce and explain a new command, find_denom. Rounding quirks whereby a total is reported as above or below 100% are discussed as a complication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of A. Colin Cameron and Pravin K. Trivedi’s Microeconometrics Using Stata, Second Edition Speaking Stata: Finding the denominator: Minimum sample size from percentages The Stata Journal Editors’ Prize 2023: Fernando Rios-Avila Review of Alan Acock’s A Gentle Introduction to Stata, Revised Sixth Edition Simpler standard errors for two-stage optimization estimators revisited
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1