Shuohui Yin , Xuefei Wang , Tinh Quoc Bui , Tiantang Yu , Zhihui Zou
{"title":"基于分层梁理论的柔电微梁分析和等距解法","authors":"Shuohui Yin , Xuefei Wang , Tinh Quoc Bui , Tiantang Yu , Zhihui Zou","doi":"10.1016/j.mechrescom.2023.104235","DOIUrl":null,"url":null,"abstract":"<div><p>The theory of layerwise beam, which considers both microstructure and flexoelectric effects, is used in the curvature-based flexoelectricity theory. The displacement field function of the layerwise beam model is given. The governing equations and boundary conditions are obtained using a variational formulation based on Hamilton's principle. Analytical solutions for static bending and free vibration of a simply supported layerwise beam are derived. Isogeometric analysis (IGA) with higher-order continuity considering the flexoelectric effect is presented to numerically solve the static bending and free vibration problems. The results obtained from the analytical and IGA approaches are compared through several examples in which the microstructure and flexoelectric effects on the mechanical responses of layerwise nanobeams are analyzed.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and isogeometric solutions of flexoelectric microbeams based on a layerwise beam theory\",\"authors\":\"Shuohui Yin , Xuefei Wang , Tinh Quoc Bui , Tiantang Yu , Zhihui Zou\",\"doi\":\"10.1016/j.mechrescom.2023.104235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theory of layerwise beam, which considers both microstructure and flexoelectric effects, is used in the curvature-based flexoelectricity theory. The displacement field function of the layerwise beam model is given. The governing equations and boundary conditions are obtained using a variational formulation based on Hamilton's principle. Analytical solutions for static bending and free vibration of a simply supported layerwise beam are derived. Isogeometric analysis (IGA) with higher-order continuity considering the flexoelectric effect is presented to numerically solve the static bending and free vibration problems. The results obtained from the analytical and IGA approaches are compared through several examples in which the microstructure and flexoelectric effects on the mechanical responses of layerwise nanobeams are analyzed.</p></div>\",\"PeriodicalId\":49846,\"journal\":{\"name\":\"Mechanics Research Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics Research Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093641323001945\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641323001945","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
在基于曲率的挠电理论中采用了同时考虑微结构和挠电效应的层向梁理论。给出了分层梁模型的位移场函数。利用基于汉密尔顿原理的变分公式得到了控制方程和边界条件。推导出了简支撑分层梁静态弯曲和自由振动的解析解。考虑到挠电效应,提出了具有高阶连续性的等几何分析 (IGA),对静态弯曲和自由振动问题进行数值求解。通过分析微观结构和挠电效应对层状纳米梁机械响应的影响的几个例子,比较了分析方法和 IGA 方法得出的结果。
Analytical and isogeometric solutions of flexoelectric microbeams based on a layerwise beam theory
The theory of layerwise beam, which considers both microstructure and flexoelectric effects, is used in the curvature-based flexoelectricity theory. The displacement field function of the layerwise beam model is given. The governing equations and boundary conditions are obtained using a variational formulation based on Hamilton's principle. Analytical solutions for static bending and free vibration of a simply supported layerwise beam are derived. Isogeometric analysis (IGA) with higher-order continuity considering the flexoelectric effect is presented to numerically solve the static bending and free vibration problems. The results obtained from the analytical and IGA approaches are compared through several examples in which the microstructure and flexoelectric effects on the mechanical responses of layerwise nanobeams are analyzed.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.