将迁移学习和可解释的人工智能融合到医疗物联网中

Ramalingam M, Manish Paliwal, R. Patibandla, Pooja Shah, B. T. Rao, D. G, S. Parvathavarthini, Gokul Yenduri, R. Jhaveri
{"title":"将迁移学习和可解释的人工智能融合到医疗物联网中","authors":"Ramalingam M, Manish Paliwal, R. Patibandla, Pooja Shah, B. T. Rao, D. G, S. Parvathavarthini, Gokul Yenduri, R. Jhaveri","doi":"10.2174/0126662558285074231120063921","DOIUrl":null,"url":null,"abstract":"\n\nThe Internet of Medical Things (IoMT), a growing field, involves the interconnection of medical devices and data sources. It connects smart devices with data and optimizes patient data with real time insights and personalized solutions. It is mandatory to hold the development of IoMT and join the evolution of healthcare. This integration of Transfer Learning\nand Explainable AI for IoMT is considered to be an essential advancement in healthcare. By\nmaking use of knowledge transfer between medical domains, Transfer Learning enhances diagnostic accuracy while reducing data necessities. This makes IoMT applications more efficient which is considered to be a mandate in today’s healthcare. In addition, explainable AI\ntechniques offer transparency and interpretability to AI driven medical decisions. This can foster trust among healthcare professionals and patients. This integration empowers personalized\nmedicine, supports clinical decision making, and confirms the responsible handling of sensitive\npatient data. Therefore, this integration promises to revolutionize healthcare by merging the\nstrengths of AI driven insights with the requirement for understandable, trustworthy, and\nadaptable systems in the IoMT ecosystem.\n","PeriodicalId":36514,"journal":{"name":"Recent Advances in Computer Science and Communications","volume":" 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amalgamation of Transfer Learning and Explainable AI for Internet of\\nMedical Things\",\"authors\":\"Ramalingam M, Manish Paliwal, R. Patibandla, Pooja Shah, B. T. Rao, D. G, S. Parvathavarthini, Gokul Yenduri, R. Jhaveri\",\"doi\":\"10.2174/0126662558285074231120063921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe Internet of Medical Things (IoMT), a growing field, involves the interconnection of medical devices and data sources. It connects smart devices with data and optimizes patient data with real time insights and personalized solutions. It is mandatory to hold the development of IoMT and join the evolution of healthcare. This integration of Transfer Learning\\nand Explainable AI for IoMT is considered to be an essential advancement in healthcare. By\\nmaking use of knowledge transfer between medical domains, Transfer Learning enhances diagnostic accuracy while reducing data necessities. This makes IoMT applications more efficient which is considered to be a mandate in today’s healthcare. In addition, explainable AI\\ntechniques offer transparency and interpretability to AI driven medical decisions. This can foster trust among healthcare professionals and patients. This integration empowers personalized\\nmedicine, supports clinical decision making, and confirms the responsible handling of sensitive\\npatient data. Therefore, this integration promises to revolutionize healthcare by merging the\\nstrengths of AI driven insights with the requirement for understandable, trustworthy, and\\nadaptable systems in the IoMT ecosystem.\\n\",\"PeriodicalId\":36514,\"journal\":{\"name\":\"Recent Advances in Computer Science and Communications\",\"volume\":\" 46\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Computer Science and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126662558285074231120063921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Computer Science and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126662558285074231120063921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

医疗物联网(IoMT)是一个不断发展的领域,涉及医疗设备和数据源的互联。它将智能设备与数据连接起来,并通过实时洞察和个性化解决方案优化患者数据。要实现 IoMT 的发展,必须加入医疗保健的发展进程。将迁移学习和可解释人工智能整合到 IoMT 中被认为是医疗保健领域的一项重要进步。通过利用医疗领域之间的知识转移,迁移学习提高了诊断准确性,同时减少了数据需求。这使得 IoMT 应用更加高效,而这正是当今医疗保健领域的一项任务。此外,可解释的人工智能技术为人工智能驱动的医疗决策提供了透明度和可解释性。这可以促进医疗专业人员和患者之间的信任。这种整合增强了个性化医疗的能力,支持临床决策,并确认了对敏感患者数据的负责任处理。因此,通过将人工智能驱动的洞察力与 IoMT 生态系统中对可理解、可信和可适应系统的要求相结合,这种集成有望彻底改变医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amalgamation of Transfer Learning and Explainable AI for Internet of Medical Things
The Internet of Medical Things (IoMT), a growing field, involves the interconnection of medical devices and data sources. It connects smart devices with data and optimizes patient data with real time insights and personalized solutions. It is mandatory to hold the development of IoMT and join the evolution of healthcare. This integration of Transfer Learning and Explainable AI for IoMT is considered to be an essential advancement in healthcare. By making use of knowledge transfer between medical domains, Transfer Learning enhances diagnostic accuracy while reducing data necessities. This makes IoMT applications more efficient which is considered to be a mandate in today’s healthcare. In addition, explainable AI techniques offer transparency and interpretability to AI driven medical decisions. This can foster trust among healthcare professionals and patients. This integration empowers personalized medicine, supports clinical decision making, and confirms the responsible handling of sensitive patient data. Therefore, this integration promises to revolutionize healthcare by merging the strengths of AI driven insights with the requirement for understandable, trustworthy, and adaptable systems in the IoMT ecosystem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Recent Advances in Computer Science and Communications
Recent Advances in Computer Science and Communications Computer Science-Computer Science (all)
CiteScore
2.50
自引率
0.00%
发文量
142
期刊最新文献
Flood Mapping and Damage Analysis Using Multispectral Sentinel-2 Satellite Imagery and Machine Learning Techniques Efficacy of Keystroke Dynamics-Based User Authentication in the Face of Language Complexity Innovation in Knowledge Economy: A Case Study of 3D Printing's Rise in Global Markets and India Cognitive Inherent SLR Enabled Survey for Software Defect Prediction An Era of Communication Technology Using Machine Learning Techniques in Medical Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1