{"title":"图像网络和大型数据体的实践分析。对社交媒体中的视觉实践进行聚类和重新语境化的方法","authors":"Wolfgang Reißmann, Miriam Siemon, Moe Kinoshita","doi":"10.24434/j.scoms.2024.01.3883","DOIUrl":null,"url":null,"abstract":"This paper reports a methodological exploration combining image network analysis and standardized practice analysis on social media data. Through applying the open source software Memespector to access the Clarifai API, the potential of an easy-at-hand image tagging tool as an instrument to manage larger data corpora is explored. Using the example of the German-speaking Twitter hashtag #systemrelevant, we relate image clusters to the results of standardized practice analysis of posts that contain images. The proposed method is intended for research that attempts to carve out the co-constituting of public discourse in social media by different groups of actors. The approach systematically differentiates the contributions of societal groups such as journalism, civil society, or private individuals, and the embedding of their tweets in selected anchoring practices and further modalities of participation. Altogether, the multistep analytical process offers a possible approach to process larger image corpora, while maintaining a sensitivity for the practice-theoretical demand of (re)contextualizing image use.","PeriodicalId":38434,"journal":{"name":"Studies in Communication Sciences","volume":"51 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image networks and practice analysis of larger data corpora. An approach to cluster and recontextualize visual practice in social media\",\"authors\":\"Wolfgang Reißmann, Miriam Siemon, Moe Kinoshita\",\"doi\":\"10.24434/j.scoms.2024.01.3883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a methodological exploration combining image network analysis and standardized practice analysis on social media data. Through applying the open source software Memespector to access the Clarifai API, the potential of an easy-at-hand image tagging tool as an instrument to manage larger data corpora is explored. Using the example of the German-speaking Twitter hashtag #systemrelevant, we relate image clusters to the results of standardized practice analysis of posts that contain images. The proposed method is intended for research that attempts to carve out the co-constituting of public discourse in social media by different groups of actors. The approach systematically differentiates the contributions of societal groups such as journalism, civil society, or private individuals, and the embedding of their tweets in selected anchoring practices and further modalities of participation. Altogether, the multistep analytical process offers a possible approach to process larger image corpora, while maintaining a sensitivity for the practice-theoretical demand of (re)contextualizing image use.\",\"PeriodicalId\":38434,\"journal\":{\"name\":\"Studies in Communication Sciences\",\"volume\":\"51 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Communication Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24434/j.scoms.2024.01.3883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Communication Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24434/j.scoms.2024.01.3883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Image networks and practice analysis of larger data corpora. An approach to cluster and recontextualize visual practice in social media
This paper reports a methodological exploration combining image network analysis and standardized practice analysis on social media data. Through applying the open source software Memespector to access the Clarifai API, the potential of an easy-at-hand image tagging tool as an instrument to manage larger data corpora is explored. Using the example of the German-speaking Twitter hashtag #systemrelevant, we relate image clusters to the results of standardized practice analysis of posts that contain images. The proposed method is intended for research that attempts to carve out the co-constituting of public discourse in social media by different groups of actors. The approach systematically differentiates the contributions of societal groups such as journalism, civil society, or private individuals, and the embedding of their tweets in selected anchoring practices and further modalities of participation. Altogether, the multistep analytical process offers a possible approach to process larger image corpora, while maintaining a sensitivity for the practice-theoretical demand of (re)contextualizing image use.