图像网络和大型数据体的实践分析。对社交媒体中的视觉实践进行聚类和重新语境化的方法

Q3 Social Sciences Studies in Communication Sciences Pub Date : 2023-12-16 DOI:10.24434/j.scoms.2024.01.3883
Wolfgang Reißmann, Miriam Siemon, Moe Kinoshita
{"title":"图像网络和大型数据体的实践分析。对社交媒体中的视觉实践进行聚类和重新语境化的方法","authors":"Wolfgang Reißmann, Miriam Siemon, Moe Kinoshita","doi":"10.24434/j.scoms.2024.01.3883","DOIUrl":null,"url":null,"abstract":"This paper reports a methodological exploration combining image network analysis and standardized practice analysis on social media data. Through applying the open source software Memespector to access the Clarifai API, the potential of an easy-at-hand image tagging tool as an instrument to manage larger data corpora is explored. Using the example of the German-speaking Twitter hashtag #systemrelevant, we relate image clusters to the results of standardized practice analysis of posts that contain images. The proposed method is intended for research that attempts to carve out the co-constituting of public discourse in social media by different groups of actors. The approach systematically differentiates the contributions of societal groups such as journalism, civil society, or private individuals, and the embedding of their tweets in selected anchoring practices and further modalities of participation. Altogether, the multistep analytical process offers a possible approach to process larger image corpora, while maintaining a sensitivity for the practice-theoretical demand of (re)contextualizing image use.","PeriodicalId":38434,"journal":{"name":"Studies in Communication Sciences","volume":"51 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image networks and practice analysis of larger data corpora. An approach to cluster and recontextualize visual practice in social media\",\"authors\":\"Wolfgang Reißmann, Miriam Siemon, Moe Kinoshita\",\"doi\":\"10.24434/j.scoms.2024.01.3883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a methodological exploration combining image network analysis and standardized practice analysis on social media data. Through applying the open source software Memespector to access the Clarifai API, the potential of an easy-at-hand image tagging tool as an instrument to manage larger data corpora is explored. Using the example of the German-speaking Twitter hashtag #systemrelevant, we relate image clusters to the results of standardized practice analysis of posts that contain images. The proposed method is intended for research that attempts to carve out the co-constituting of public discourse in social media by different groups of actors. The approach systematically differentiates the contributions of societal groups such as journalism, civil society, or private individuals, and the embedding of their tweets in selected anchoring practices and further modalities of participation. Altogether, the multistep analytical process offers a possible approach to process larger image corpora, while maintaining a sensitivity for the practice-theoretical demand of (re)contextualizing image use.\",\"PeriodicalId\":38434,\"journal\":{\"name\":\"Studies in Communication Sciences\",\"volume\":\"51 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Communication Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24434/j.scoms.2024.01.3883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Communication Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24434/j.scoms.2024.01.3883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文报告了在社交媒体数据上结合图像网络分析和标准化实践分析的方法论探索。通过应用开放源码软件 Memespector 访问 Clarifai API,探索了图像标记工具作为管理大型数据体的工具的潜力。以德语 Twitter 标签 #systemrelevant 为例,我们将图像集群与包含图像的帖子的标准化实践分析结果联系起来。所提出的方法适用于试图揭示不同参与者群体在社交媒体中共同构成公共话语的研究。该方法系统地区分了新闻业、公民社会或个人等社会群体的贡献,以及他们的推文在选定的锚定实践中的嵌入情况和进一步的参与方式。总之,多步骤分析过程为处理更大规模的图像库提供了一种可行的方法,同时保持了对图像使用(重新)语境化的实践-理论需求的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image networks and practice analysis of larger data corpora. An approach to cluster and recontextualize visual practice in social media
This paper reports a methodological exploration combining image network analysis and standardized practice analysis on social media data. Through applying the open source software Memespector to access the Clarifai API, the potential of an easy-at-hand image tagging tool as an instrument to manage larger data corpora is explored. Using the example of the German-speaking Twitter hashtag #systemrelevant, we relate image clusters to the results of standardized practice analysis of posts that contain images. The proposed method is intended for research that attempts to carve out the co-constituting of public discourse in social media by different groups of actors. The approach systematically differentiates the contributions of societal groups such as journalism, civil society, or private individuals, and the embedding of their tweets in selected anchoring practices and further modalities of participation. Altogether, the multistep analytical process offers a possible approach to process larger image corpora, while maintaining a sensitivity for the practice-theoretical demand of (re)contextualizing image use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Communication Sciences
Studies in Communication Sciences Social Sciences-Communication
CiteScore
1.20
自引率
0.00%
发文量
34
审稿时长
36 weeks
期刊最新文献
Botlitica: A generative AI-based tool to assist journalists in navigating political propaganda campaigns Iconic image clusters: Significance, structure, and analysis Images, clusters and types – Making sense of (large) image corpora and related practices in and with digital media From party to pandemic – Frames and metaphors in the news coverage of the COVID-19 outbreak in Austria Image types revisited. A texto-material approach for creating image types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1