为什么大型语言模型是人类语言认知的拙劣理论?回复 Piantadosi

IF 0.6 0 LANGUAGE & LINGUISTICS Biolinguistics Pub Date : 2023-12-15 DOI:10.5964/bioling.13153
Roni Katzir
{"title":"为什么大型语言模型是人类语言认知的拙劣理论?回复 Piantadosi","authors":"Roni Katzir","doi":"10.5964/bioling.13153","DOIUrl":null,"url":null,"abstract":"In a recent manuscript entitled “Modern language models refute Chomsky’s approach to language”, Steven Piantadosi proposes that large language models such as GPT-3 can serve as serious theories of human linguistic cognition. In fact, he maintains that these models are significantly better linguistic theories than proposals emerging from within generative linguistics. The present note explains why this claim is wrong.","PeriodicalId":54041,"journal":{"name":"Biolinguistics","volume":"332 9","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Why large language models are poor theories of human linguistic cognition: A reply to Piantadosi\",\"authors\":\"Roni Katzir\",\"doi\":\"10.5964/bioling.13153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent manuscript entitled “Modern language models refute Chomsky’s approach to language”, Steven Piantadosi proposes that large language models such as GPT-3 can serve as serious theories of human linguistic cognition. In fact, he maintains that these models are significantly better linguistic theories than proposals emerging from within generative linguistics. The present note explains why this claim is wrong.\",\"PeriodicalId\":54041,\"journal\":{\"name\":\"Biolinguistics\",\"volume\":\"332 9\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biolinguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5964/bioling.13153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biolinguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5964/bioling.13153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 9

摘要

史蒂文-皮安塔多西(Steven Piantadosi)在最近一篇题为 "现代语言模型驳斥乔姆斯基的语言方法 "的手稿中提出,GPT-3 等大型语言模型可以作为人类语言认知的严肃理论。事实上,他认为这些模型是比生成语言学中出现的建议更好的语言理论。本说明解释了为什么这种说法是错误的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why large language models are poor theories of human linguistic cognition: A reply to Piantadosi
In a recent manuscript entitled “Modern language models refute Chomsky’s approach to language”, Steven Piantadosi proposes that large language models such as GPT-3 can serve as serious theories of human linguistic cognition. In fact, he maintains that these models are significantly better linguistic theories than proposals emerging from within generative linguistics. The present note explains why this claim is wrong.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biolinguistics
Biolinguistics LANGUAGE & LINGUISTICS-
CiteScore
1.50
自引率
0.00%
发文量
5
审稿时长
12 weeks
期刊最新文献
Biolinguistics end-of-year notice 2023 Why large language models are poor theories of human linguistic cognition: A reply to Piantadosi Social evolution and commitment: Bridging the gap between formal linguistic theories and language evolution research A future without a past: Philosophical consequences of Merge Eademne sunt?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1