水文气候变化对流域管理中具有气候复原力的农业的影响

IF 2.7 4区 环境科学与生态学 Q2 WATER RESOURCES Journal of Water and Climate Change Pub Date : 2023-12-15 DOI:10.2166/wcc.2023.656
C. Singha, Satiprasad Sahoo, Ajit Govind, Biswajeet Pradhan, Shatha Alrawashdeh, Taghreed Hamdi Aljohani, Hussein Almohamad, Abu Reza Md Towfiqul Islam, Hazam Ghassan Abdo
{"title":"水文气候变化对流域管理中具有气候复原力的农业的影响","authors":"C. Singha, Satiprasad Sahoo, Ajit Govind, Biswajeet Pradhan, Shatha Alrawashdeh, Taghreed Hamdi Aljohani, Hussein Almohamad, Abu Reza Md Towfiqul Islam, Hazam Ghassan Abdo","doi":"10.2166/wcc.2023.656","DOIUrl":null,"url":null,"abstract":"\n \n This paper focuses on exploring the potential of climate-resilient agriculture (CRA) for river basin-scale management. Our analysis is based on long-term historical and future climate and hydrological datasets within a GIS environment, focusing on the Ajoy River basin in West Bengal, Eastern India. The standardized anomaly index (SAI) and slope of the linear regression (SLR) methods were employed to analyze the spatial pattern of the climate variables (precipitation, Tmax, and Tmin) and hydrological variables (actual evapotranspiration (AET), runoff (Q), vapor pressure deficit (VPD), potential evapotranspiration (PET), and climate water deficit (DEF)) using the TerraClimate dataset spanning from 1958 to 2020. Future climate trend analysis spanning 2021–2100 was conducted using the CMIP6-based GCMs (MIROC6 and EC-Earth3) dataset under shared socio-economic pathway SSP2-4.5, SSP5-8.5, and historical). For spatiotemporal water storage analysis, we relied on Gravity Recovery and Climate Experiment (GRACE) from CSR and JPL data, covering the period from 2002 to 2021. Validation was performed using regional groundwater level data, employing various machine learning classification models. Our findings revealed a negative precipitation trend (approximately −0.04 mm/year) in the southern part, whereas the northern part exhibited a positive trend (approximately 0.10 mm/year).","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"29 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of hydroclimate change on climate-resilient agriculture at the river basin management\",\"authors\":\"C. Singha, Satiprasad Sahoo, Ajit Govind, Biswajeet Pradhan, Shatha Alrawashdeh, Taghreed Hamdi Aljohani, Hussein Almohamad, Abu Reza Md Towfiqul Islam, Hazam Ghassan Abdo\",\"doi\":\"10.2166/wcc.2023.656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This paper focuses on exploring the potential of climate-resilient agriculture (CRA) for river basin-scale management. Our analysis is based on long-term historical and future climate and hydrological datasets within a GIS environment, focusing on the Ajoy River basin in West Bengal, Eastern India. The standardized anomaly index (SAI) and slope of the linear regression (SLR) methods were employed to analyze the spatial pattern of the climate variables (precipitation, Tmax, and Tmin) and hydrological variables (actual evapotranspiration (AET), runoff (Q), vapor pressure deficit (VPD), potential evapotranspiration (PET), and climate water deficit (DEF)) using the TerraClimate dataset spanning from 1958 to 2020. Future climate trend analysis spanning 2021–2100 was conducted using the CMIP6-based GCMs (MIROC6 and EC-Earth3) dataset under shared socio-economic pathway SSP2-4.5, SSP5-8.5, and historical). For spatiotemporal water storage analysis, we relied on Gravity Recovery and Climate Experiment (GRACE) from CSR and JPL data, covering the period from 2002 to 2021. Validation was performed using regional groundwater level data, employing various machine learning classification models. Our findings revealed a negative precipitation trend (approximately −0.04 mm/year) in the southern part, whereas the northern part exhibited a positive trend (approximately 0.10 mm/year).\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"29 11\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.656\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2023.656","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

本文重点探讨了气候适应性农业 (CRA) 在流域管理方面的潜力。我们的分析基于地理信息系统环境中的长期历史和未来气候与水文数据集,重点关注印度东部西孟加拉邦的 Ajoy 河流域。我们采用标准化异常指数(SAI)和线性回归斜率(SLR)方法,利用 1958 年至 2020 年的 TerraClimate 数据集分析了气候变量(降水、Tmax 和 Tmin)和水文变量(实际蒸散(AET)、径流(Q)、蒸汽压力亏损(VPD)、潜在蒸散(PET)和气候水分亏缺(DEF))的空间模式。利用基于 CMIP6 的 GCMs(MIROC6 和 EC-Earth3)数据集,在共享社会经济路径 SSP2-4.5、SSP5-8.5 和历史路径下,对 2021-2100 年的未来气候趋势进行了分析。)在时空蓄水分析方面,我们利用了 CSR 和 JPL 的重力恢复和气候实验(GRACE)数据,时间跨度为 2002 年至 2021 年。利用区域地下水位数据,采用各种机器学习分类模型进行了验证。我们的研究结果表明,南部地区降水量呈负增长趋势(约-0.04毫米/年),而北部地区则呈正增长趋势(约0.10毫米/年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of hydroclimate change on climate-resilient agriculture at the river basin management
This paper focuses on exploring the potential of climate-resilient agriculture (CRA) for river basin-scale management. Our analysis is based on long-term historical and future climate and hydrological datasets within a GIS environment, focusing on the Ajoy River basin in West Bengal, Eastern India. The standardized anomaly index (SAI) and slope of the linear regression (SLR) methods were employed to analyze the spatial pattern of the climate variables (precipitation, Tmax, and Tmin) and hydrological variables (actual evapotranspiration (AET), runoff (Q), vapor pressure deficit (VPD), potential evapotranspiration (PET), and climate water deficit (DEF)) using the TerraClimate dataset spanning from 1958 to 2020. Future climate trend analysis spanning 2021–2100 was conducted using the CMIP6-based GCMs (MIROC6 and EC-Earth3) dataset under shared socio-economic pathway SSP2-4.5, SSP5-8.5, and historical). For spatiotemporal water storage analysis, we relied on Gravity Recovery and Climate Experiment (GRACE) from CSR and JPL data, covering the period from 2002 to 2021. Validation was performed using regional groundwater level data, employing various machine learning classification models. Our findings revealed a negative precipitation trend (approximately −0.04 mm/year) in the southern part, whereas the northern part exhibited a positive trend (approximately 0.10 mm/year).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
10.70%
发文量
168
审稿时长
>12 weeks
期刊介绍: Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.
期刊最新文献
Analysis of different hypotheses for modeling air–water exchange and temperature evolution in a tropical reservoir Accounting for climate change in the water infrastructure design: evaluating approaches and recommending a hybrid framework Climatic characteristics and main weather patterns of extreme precipitation in the middle Yangtze River valley Water quality prediction: A data-driven approach exploiting advanced machine learning algorithms with data augmentation Consequence assessment of the La Giang dike breach in the Ca river system, Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1