Vicente Pérez-Madrigal, E. Ríos-Valdovinos, E. Rojas-García, Miguel A. Valenzuela, F. Pola-Albores
{"title":"掺锂 Ni/TiO2 催化剂对甲烷的干法转化:支撑碱度的影响","authors":"Vicente Pérez-Madrigal, E. Ríos-Valdovinos, E. Rojas-García, Miguel A. Valenzuela, F. Pola-Albores","doi":"10.3390/methane2040031","DOIUrl":null,"url":null,"abstract":"In this research, we investigate the impact of Li doping on a TiO2 support, synthesized through the sol-gel method, with a focus on varying the aging time. Our objective is to elucidate how aging duration and doping influence the surface basicity, thereby mitigating carbon formation and amplifying the catalytic efficacy of Ni-loaded catalysts (15 wt.%). Essential characterization techniques encompass X-ray diffraction, H2-TPR, FE-SEM, N2-physisorption, DLS, FTIR, and Raman spectroscopies. Our findings reveal that extended aging periods promote the development of a basic character, attributable to oxygen defects within TiO2. This inherent trait bears significant implications for catalyst performance, stability, and carbon formation during the reaction. Remarkably, the catalyst with the highest catalytic activity and stability boasts an 85% relative basicity, a property also induced by incorporating lithium into the TiO2 support.","PeriodicalId":74177,"journal":{"name":"Methane","volume":"10 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dry Reforming of Methane over Li-Doped Ni/TiO2 Catalysts: Effect of Support Basicity\",\"authors\":\"Vicente Pérez-Madrigal, E. Ríos-Valdovinos, E. Rojas-García, Miguel A. Valenzuela, F. Pola-Albores\",\"doi\":\"10.3390/methane2040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we investigate the impact of Li doping on a TiO2 support, synthesized through the sol-gel method, with a focus on varying the aging time. Our objective is to elucidate how aging duration and doping influence the surface basicity, thereby mitigating carbon formation and amplifying the catalytic efficacy of Ni-loaded catalysts (15 wt.%). Essential characterization techniques encompass X-ray diffraction, H2-TPR, FE-SEM, N2-physisorption, DLS, FTIR, and Raman spectroscopies. Our findings reveal that extended aging periods promote the development of a basic character, attributable to oxygen defects within TiO2. This inherent trait bears significant implications for catalyst performance, stability, and carbon formation during the reaction. Remarkably, the catalyst with the highest catalytic activity and stability boasts an 85% relative basicity, a property also induced by incorporating lithium into the TiO2 support.\",\"PeriodicalId\":74177,\"journal\":{\"name\":\"Methane\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methane\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/methane2040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methane","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/methane2040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,我们研究了锂掺杂对通过溶胶-凝胶法合成的 TiO2 载体的影响,重点是改变老化时间。我们的目标是阐明老化时间和掺杂如何影响表面碱性,从而减少碳的形成并提高镍负载催化剂(15 wt.%)的催化效率。基本表征技术包括 X 射线衍射、H2-TPR、FE-SEM、N2-物理吸附、DLS、傅立叶变换红外光谱和拉曼光谱。我们的研究结果表明,由于二氧化钛中的氧缺陷,延长老化期会促进碱性特征的发展。这种固有特性对催化剂的性能、稳定性和反应过程中的碳形成具有重要影响。值得注意的是,催化活性和稳定性最高的催化剂具有 85% 的相对碱性,这一特性也是通过在 TiO2 载体中加入锂而产生的。
Dry Reforming of Methane over Li-Doped Ni/TiO2 Catalysts: Effect of Support Basicity
In this research, we investigate the impact of Li doping on a TiO2 support, synthesized through the sol-gel method, with a focus on varying the aging time. Our objective is to elucidate how aging duration and doping influence the surface basicity, thereby mitigating carbon formation and amplifying the catalytic efficacy of Ni-loaded catalysts (15 wt.%). Essential characterization techniques encompass X-ray diffraction, H2-TPR, FE-SEM, N2-physisorption, DLS, FTIR, and Raman spectroscopies. Our findings reveal that extended aging periods promote the development of a basic character, attributable to oxygen defects within TiO2. This inherent trait bears significant implications for catalyst performance, stability, and carbon formation during the reaction. Remarkably, the catalyst with the highest catalytic activity and stability boasts an 85% relative basicity, a property also induced by incorporating lithium into the TiO2 support.