{"title":"利用地震约束重力反演,探索北加拿大科迪勒拉山系下的莫霍面。","authors":"N. Hayward, Ernst M. Schetselaar","doi":"10.1139/cjes-2023-0121","DOIUrl":null,"url":null,"abstract":"The geometry and depth of the Moho beneath the Northern Canadian Cordillera and adjacent North American craton are modeled through the application of both cokriging and 3-D inversion of gravity data, integrated with sparse seismic depth estimates. Models require a regional density correction, with lower densities beneath the Cordillera than the craton. The lower densities are primarily attributed to a reduction in upper mantle density, ascribed to thermal expansion under regionally higher temperatures. The eastern margin of this low-density zone is broadly aligned with the rapid westward shallowing of the lithospheric-asthenospheric boundary. From the Cordillera to the North American craton, the Moho is broadly flat at a depth of ~32 km. A zone of deeper Moho (up to ~38 km) beneath the Mistry Creek embayment has a modeled mantle density that is of a colder cratonic signature, akin to the Mackenzie craton, and is interpreted to represent the preserved remnants of an old rift basin, that is a local focus of the diffuse seismicity. Southeast of the Fort Norman structure, seismicity is broadly focussed along the eastern edge of the low-density zone. Major structures such as the Denali and Tintina faults, with 100’s km of right-lateral displacement, separate zones of higher and lower upper mantle density, supporting the interpretation of their continuation into the upper mantle. Within the North American craton upper mantle density steadily increases towards the Great Bear magmatic zone, but increases more rapidly beneath the Slave craton in tangent with a deepening of the Moho.","PeriodicalId":9567,"journal":{"name":"Canadian Journal of Earth Sciences","volume":"19 75","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Moho beneath the Northern Canadian Cordillera, with seismically constrained gravity inversion.\",\"authors\":\"N. Hayward, Ernst M. Schetselaar\",\"doi\":\"10.1139/cjes-2023-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometry and depth of the Moho beneath the Northern Canadian Cordillera and adjacent North American craton are modeled through the application of both cokriging and 3-D inversion of gravity data, integrated with sparse seismic depth estimates. Models require a regional density correction, with lower densities beneath the Cordillera than the craton. The lower densities are primarily attributed to a reduction in upper mantle density, ascribed to thermal expansion under regionally higher temperatures. The eastern margin of this low-density zone is broadly aligned with the rapid westward shallowing of the lithospheric-asthenospheric boundary. From the Cordillera to the North American craton, the Moho is broadly flat at a depth of ~32 km. A zone of deeper Moho (up to ~38 km) beneath the Mistry Creek embayment has a modeled mantle density that is of a colder cratonic signature, akin to the Mackenzie craton, and is interpreted to represent the preserved remnants of an old rift basin, that is a local focus of the diffuse seismicity. Southeast of the Fort Norman structure, seismicity is broadly focussed along the eastern edge of the low-density zone. Major structures such as the Denali and Tintina faults, with 100’s km of right-lateral displacement, separate zones of higher and lower upper mantle density, supporting the interpretation of their continuation into the upper mantle. Within the North American craton upper mantle density steadily increases towards the Great Bear magmatic zone, but increases more rapidly beneath the Slave craton in tangent with a deepening of the Moho.\",\"PeriodicalId\":9567,\"journal\":{\"name\":\"Canadian Journal of Earth Sciences\",\"volume\":\"19 75\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cjes-2023-0121\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cjes-2023-0121","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the Moho beneath the Northern Canadian Cordillera, with seismically constrained gravity inversion.
The geometry and depth of the Moho beneath the Northern Canadian Cordillera and adjacent North American craton are modeled through the application of both cokriging and 3-D inversion of gravity data, integrated with sparse seismic depth estimates. Models require a regional density correction, with lower densities beneath the Cordillera than the craton. The lower densities are primarily attributed to a reduction in upper mantle density, ascribed to thermal expansion under regionally higher temperatures. The eastern margin of this low-density zone is broadly aligned with the rapid westward shallowing of the lithospheric-asthenospheric boundary. From the Cordillera to the North American craton, the Moho is broadly flat at a depth of ~32 km. A zone of deeper Moho (up to ~38 km) beneath the Mistry Creek embayment has a modeled mantle density that is of a colder cratonic signature, akin to the Mackenzie craton, and is interpreted to represent the preserved remnants of an old rift basin, that is a local focus of the diffuse seismicity. Southeast of the Fort Norman structure, seismicity is broadly focussed along the eastern edge of the low-density zone. Major structures such as the Denali and Tintina faults, with 100’s km of right-lateral displacement, separate zones of higher and lower upper mantle density, supporting the interpretation of their continuation into the upper mantle. Within the North American craton upper mantle density steadily increases towards the Great Bear magmatic zone, but increases more rapidly beneath the Slave craton in tangent with a deepening of the Moho.
期刊介绍:
The Canadian Journal of Earth Sciences reports current research in climate and environmental geoscience; geoarchaeology and forensic geoscience; geochronology and geochemistry; geophysics; GIS and geomatics; hydrology; mineralogy and petrology; mining and engineering geology; ore deposits and economic geology; paleontology, petroleum geology and basin analysis; physical geography and Quaternary geoscience; planetary geoscience; sedimentology and stratigraphy; soil sciences; and structural geology and tectonics. It also publishes special issues that focus on information and studies about a particular segment of earth sciences.