巴西法律系统中的请愿分类自动化:两步式深度学习方法

IF 3.1 2区 社会学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence and Law Pub Date : 2023-12-15 DOI:10.1007/s10506-023-09385-4
Yuri D. R. Costa, Hugo Oliveira, Valério Nogueira Jr., Lucas Massa, Xu Yang, Adriano Barbosa, Krerley Oliveira, Thales Vieira
{"title":"巴西法律系统中的请愿分类自动化:两步式深度学习方法","authors":"Yuri D. R. Costa,&nbsp;Hugo Oliveira,&nbsp;Valério Nogueira Jr.,&nbsp;Lucas Massa,&nbsp;Xu Yang,&nbsp;Adriano Barbosa,&nbsp;Krerley Oliveira,&nbsp;Thales Vieira","doi":"10.1007/s10506-023-09385-4","DOIUrl":null,"url":null,"abstract":"<div><p>Automated classification of legal documents has been the subject of extensive research in recent years. However, this is still a challenging task for long documents, since it is difficult for a model to identify the most relevant information for classification. In this paper, we propose a two-stage supervised learning approach for the classification of petitions, a type of legal document that requests a court order. The proposed approach is based on a word-level encoder–decoder Seq2Seq deep neural network, such as a Bidirectional Long Short-Term Memory (BiLSTM) or a Bidirectional Encoder Representations from Transformers (BERT) model, and a document-level Support Vector Machine classifier. To address the challenges posed by the lengthy legal documents, the approach introduces a human-in-the-loop approach, whose task is to localize and tag relevant segments of text in the word-level training part, which dramatically reduces the dimension of the document classifier input vector. We performed experiments to validate our approach using a real-world dataset comprised of 270 intermediate petitions, which were carefully annotated by specialists from the 15th civil unit of the State of Alagoas, Brazil. Our results revealed that both BiLSTM and BERT-Convolutional Neural Networks variants achieved an accuracy of up to 95.49%, and also outperformed baseline classifiers based on the Term Frequency–Inverse Document Frequency test vectorizer. The proposed approach is currently being utilized to automate the aforementioned justice unit, thereby increasing its efficiency in handling repetitive tasks.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"33 1","pages":"227 - 251"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automating petition classification in Brazil’s legal system: a two-step deep learning approach\",\"authors\":\"Yuri D. R. Costa,&nbsp;Hugo Oliveira,&nbsp;Valério Nogueira Jr.,&nbsp;Lucas Massa,&nbsp;Xu Yang,&nbsp;Adriano Barbosa,&nbsp;Krerley Oliveira,&nbsp;Thales Vieira\",\"doi\":\"10.1007/s10506-023-09385-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Automated classification of legal documents has been the subject of extensive research in recent years. However, this is still a challenging task for long documents, since it is difficult for a model to identify the most relevant information for classification. In this paper, we propose a two-stage supervised learning approach for the classification of petitions, a type of legal document that requests a court order. The proposed approach is based on a word-level encoder–decoder Seq2Seq deep neural network, such as a Bidirectional Long Short-Term Memory (BiLSTM) or a Bidirectional Encoder Representations from Transformers (BERT) model, and a document-level Support Vector Machine classifier. To address the challenges posed by the lengthy legal documents, the approach introduces a human-in-the-loop approach, whose task is to localize and tag relevant segments of text in the word-level training part, which dramatically reduces the dimension of the document classifier input vector. We performed experiments to validate our approach using a real-world dataset comprised of 270 intermediate petitions, which were carefully annotated by specialists from the 15th civil unit of the State of Alagoas, Brazil. Our results revealed that both BiLSTM and BERT-Convolutional Neural Networks variants achieved an accuracy of up to 95.49%, and also outperformed baseline classifiers based on the Term Frequency–Inverse Document Frequency test vectorizer. The proposed approach is currently being utilized to automate the aforementioned justice unit, thereby increasing its efficiency in handling repetitive tasks.</p></div>\",\"PeriodicalId\":51336,\"journal\":{\"name\":\"Artificial Intelligence and Law\",\"volume\":\"33 1\",\"pages\":\"227 - 251\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Law\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10506-023-09385-4\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-023-09385-4","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automating petition classification in Brazil’s legal system: a two-step deep learning approach

Automated classification of legal documents has been the subject of extensive research in recent years. However, this is still a challenging task for long documents, since it is difficult for a model to identify the most relevant information for classification. In this paper, we propose a two-stage supervised learning approach for the classification of petitions, a type of legal document that requests a court order. The proposed approach is based on a word-level encoder–decoder Seq2Seq deep neural network, such as a Bidirectional Long Short-Term Memory (BiLSTM) or a Bidirectional Encoder Representations from Transformers (BERT) model, and a document-level Support Vector Machine classifier. To address the challenges posed by the lengthy legal documents, the approach introduces a human-in-the-loop approach, whose task is to localize and tag relevant segments of text in the word-level training part, which dramatically reduces the dimension of the document classifier input vector. We performed experiments to validate our approach using a real-world dataset comprised of 270 intermediate petitions, which were carefully annotated by specialists from the 15th civil unit of the State of Alagoas, Brazil. Our results revealed that both BiLSTM and BERT-Convolutional Neural Networks variants achieved an accuracy of up to 95.49%, and also outperformed baseline classifiers based on the Term Frequency–Inverse Document Frequency test vectorizer. The proposed approach is currently being utilized to automate the aforementioned justice unit, thereby increasing its efficiency in handling repetitive tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
26.80%
发文量
33
期刊介绍: Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law. Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.
期刊最新文献
AI, Law and beyond. A transdisciplinary ecosystem for the future of AI & Law Correction to: Reasoning with inconsistent precedents Toward representing interpretation in factor-based models of precedent DiscoLQA: zero-shot discourse-based legal question answering on European Legislation A neural network to identify requests, decisions, and arguments in court rulings on custody
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1