{"title":"生物信息学分析党参治疗卵巢癌的机制","authors":"Zhenhui Chen, Yan Zhou, Yun Shen, Yanrong Ye","doi":"10.1177/09731296231204151","DOIUrl":null,"url":null,"abstract":"Codonopsis Radix (CR), a renowned traditional Chinese medicine (TCM) formula, has been widely applied for its immunomodulatory, antitumor, antioxidant, neuroprotective, and antiviral effects. However, the multitarget mechanism of CR in ovarian cancer (OC) remains to be elucidated. We applied bioinformatics and molecular docking techniques to explore possible pharmacological targets, bioactivities, and molecular mechanisms of CR for OC treatment. We identified 40 common genes associated with CR and OC and obtained core genes through a protein–protein interaction network. Enrichment analysis revealed that mitochondrial electron transport was the key biological process involved. Based on the analysis, we selected estrogen receptor 1 (ESR1) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) as the key target genes for molecular docking. In the final verification analysis, we evaluated the effect of the PIK3CA mutation on the survival rate of patients with OC and determined that the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway was the key pathway in the OC treatment. These results suggest that CR inhibits the activity of mitochondrial complex II, reduces adenosine triphosphate (ATP) production by mitochondrial electron transport, inhibits PI3K/AKT phosphorylation, and promotes apoptosis in OC cells.","PeriodicalId":19895,"journal":{"name":"Pharmacognosy Magazine","volume":"11 21","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatics Analyzes the Mechanisms of Codonopsis Radix in Treating Ovarian Cancer\",\"authors\":\"Zhenhui Chen, Yan Zhou, Yun Shen, Yanrong Ye\",\"doi\":\"10.1177/09731296231204151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Codonopsis Radix (CR), a renowned traditional Chinese medicine (TCM) formula, has been widely applied for its immunomodulatory, antitumor, antioxidant, neuroprotective, and antiviral effects. However, the multitarget mechanism of CR in ovarian cancer (OC) remains to be elucidated. We applied bioinformatics and molecular docking techniques to explore possible pharmacological targets, bioactivities, and molecular mechanisms of CR for OC treatment. We identified 40 common genes associated with CR and OC and obtained core genes through a protein–protein interaction network. Enrichment analysis revealed that mitochondrial electron transport was the key biological process involved. Based on the analysis, we selected estrogen receptor 1 (ESR1) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) as the key target genes for molecular docking. In the final verification analysis, we evaluated the effect of the PIK3CA mutation on the survival rate of patients with OC and determined that the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway was the key pathway in the OC treatment. These results suggest that CR inhibits the activity of mitochondrial complex II, reduces adenosine triphosphate (ATP) production by mitochondrial electron transport, inhibits PI3K/AKT phosphorylation, and promotes apoptosis in OC cells.\",\"PeriodicalId\":19895,\"journal\":{\"name\":\"Pharmacognosy Magazine\",\"volume\":\"11 21\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacognosy Magazine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09731296231204151\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacognosy Magazine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09731296231204151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Bioinformatics Analyzes the Mechanisms of Codonopsis Radix in Treating Ovarian Cancer
Codonopsis Radix (CR), a renowned traditional Chinese medicine (TCM) formula, has been widely applied for its immunomodulatory, antitumor, antioxidant, neuroprotective, and antiviral effects. However, the multitarget mechanism of CR in ovarian cancer (OC) remains to be elucidated. We applied bioinformatics and molecular docking techniques to explore possible pharmacological targets, bioactivities, and molecular mechanisms of CR for OC treatment. We identified 40 common genes associated with CR and OC and obtained core genes through a protein–protein interaction network. Enrichment analysis revealed that mitochondrial electron transport was the key biological process involved. Based on the analysis, we selected estrogen receptor 1 (ESR1) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) as the key target genes for molecular docking. In the final verification analysis, we evaluated the effect of the PIK3CA mutation on the survival rate of patients with OC and determined that the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway was the key pathway in the OC treatment. These results suggest that CR inhibits the activity of mitochondrial complex II, reduces adenosine triphosphate (ATP) production by mitochondrial electron transport, inhibits PI3K/AKT phosphorylation, and promotes apoptosis in OC cells.