See Ven Lim, M. A. Zulkifley, Azlan Saleh, A. H. Saputro, Siti Raihanah Abdani
{"title":"用于森林应用的基于注意力的语义分割网络","authors":"See Ven Lim, M. A. Zulkifley, Azlan Saleh, A. H. Saputro, Siti Raihanah Abdani","doi":"10.3390/f14122437","DOIUrl":null,"url":null,"abstract":"Deforestation remains one of the key concerning activities around the world due to commodity-driven extraction, agricultural land expansion, and urbanization. The effective and efficient monitoring of national forests using remote sensing technology is important for the early detection and mitigation of deforestation activities. Deep learning techniques have been vastly researched and applied to various remote sensing tasks, whereby fully convolutional neural networks have been commonly studied with various input band combinations for satellite imagery applications, but very little research has focused on deep networks with high-resolution representations, such as HRNet. In this study, an optimal semantic segmentation architecture based on high-resolution feature maps and an attention mechanism is proposed to label each pixel of the satellite imagery input for forest identification. The selected study areas are located in Malaysian rainforests, sampled from 2016, 2018, and 2020, downloaded using Google Earth Pro. Only a two-class problem is considered for this study, which is to classify each pixel either as forest or non-forest. HRNet is chosen as the baseline architecture, in which the hyperparameters are optimized before being embedded with an attention mechanism to help the model to focus on more critical features that are related to the forest. Several variants of the proposed methods are validated on 6120 sliced images, whereby the best performance reaches 85.58% for the mean intersection over union and 92.24% for accuracy. The benchmarking analysis also reveals that the attention-embedded high-resolution architecture outperforms U-Net, SegNet, and FC-DenseNet for both performance metrics. A qualitative analysis between the baseline and attention-based models also shows that fewer false classifications and cleaner prediction outputs can be observed in identifying the forest areas.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"58 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-Based Semantic Segmentation Networks for Forest Applications\",\"authors\":\"See Ven Lim, M. A. Zulkifley, Azlan Saleh, A. H. Saputro, Siti Raihanah Abdani\",\"doi\":\"10.3390/f14122437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deforestation remains one of the key concerning activities around the world due to commodity-driven extraction, agricultural land expansion, and urbanization. The effective and efficient monitoring of national forests using remote sensing technology is important for the early detection and mitigation of deforestation activities. Deep learning techniques have been vastly researched and applied to various remote sensing tasks, whereby fully convolutional neural networks have been commonly studied with various input band combinations for satellite imagery applications, but very little research has focused on deep networks with high-resolution representations, such as HRNet. In this study, an optimal semantic segmentation architecture based on high-resolution feature maps and an attention mechanism is proposed to label each pixel of the satellite imagery input for forest identification. The selected study areas are located in Malaysian rainforests, sampled from 2016, 2018, and 2020, downloaded using Google Earth Pro. Only a two-class problem is considered for this study, which is to classify each pixel either as forest or non-forest. HRNet is chosen as the baseline architecture, in which the hyperparameters are optimized before being embedded with an attention mechanism to help the model to focus on more critical features that are related to the forest. Several variants of the proposed methods are validated on 6120 sliced images, whereby the best performance reaches 85.58% for the mean intersection over union and 92.24% for accuracy. The benchmarking analysis also reveals that the attention-embedded high-resolution architecture outperforms U-Net, SegNet, and FC-DenseNet for both performance metrics. A qualitative analysis between the baseline and attention-based models also shows that fewer false classifications and cleaner prediction outputs can be observed in identifying the forest areas.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\"58 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f14122437\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14122437","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Attention-Based Semantic Segmentation Networks for Forest Applications
Deforestation remains one of the key concerning activities around the world due to commodity-driven extraction, agricultural land expansion, and urbanization. The effective and efficient monitoring of national forests using remote sensing technology is important for the early detection and mitigation of deforestation activities. Deep learning techniques have been vastly researched and applied to various remote sensing tasks, whereby fully convolutional neural networks have been commonly studied with various input band combinations for satellite imagery applications, but very little research has focused on deep networks with high-resolution representations, such as HRNet. In this study, an optimal semantic segmentation architecture based on high-resolution feature maps and an attention mechanism is proposed to label each pixel of the satellite imagery input for forest identification. The selected study areas are located in Malaysian rainforests, sampled from 2016, 2018, and 2020, downloaded using Google Earth Pro. Only a two-class problem is considered for this study, which is to classify each pixel either as forest or non-forest. HRNet is chosen as the baseline architecture, in which the hyperparameters are optimized before being embedded with an attention mechanism to help the model to focus on more critical features that are related to the forest. Several variants of the proposed methods are validated on 6120 sliced images, whereby the best performance reaches 85.58% for the mean intersection over union and 92.24% for accuracy. The benchmarking analysis also reveals that the attention-embedded high-resolution architecture outperforms U-Net, SegNet, and FC-DenseNet for both performance metrics. A qualitative analysis between the baseline and attention-based models also shows that fewer false classifications and cleaner prediction outputs can be observed in identifying the forest areas.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.